Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On an elliptic system related to desertification studies

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorKyriazopoulos, Paris
dc.date.accessioned2023-06-19T13:28:44Z
dc.date.available2023-06-19T13:28:44Z
dc.date.issued2014
dc.description.abstractIn this communication, we consider the stationary problem of a non-linear parabolic system which arises in the context of dry-land vegetation. In the first part, we examine the existence and multiplicity of biomass stationary solutions, in terms of the precipitation rate parameter p, for a localized simplification of the system, with non-homogeneous rate of biomass loss. In fact, we show that under appropriate conditions on fixed parameters of the problem, multiple positive solutions exist for a range of the parameter p. In the second part, we consider the case of an idealized “oasis”, ω ⊂⊂ Ω, where we study the transition of the surface-water height in a neighborhood of the set ω
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipResearch Group MOMAT
dc.description.sponsorshipUCM
dc.description.sponsorshipDGISPI, Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28852
dc.identifier.doi10.1007/s13398-012-0108-0
dc.identifier.issn1578-7303
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2Fs13398-012-0108-0#page-1
dc.identifier.relatedurlhttp://lspringer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33820
dc.journal.titleRACSAM. Serie A. Matemáticas
dc.language.isoeng
dc.page.final404
dc.page.initial397
dc.publisherSpringer
dc.relation.projectIDITN FIRST (238702)
dc.relation.projectID(910480)
dc.relation.projectIDMTM2011-26119
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordMultiplicity of positive solutions
dc.subject.keywordDry-land vegetation
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleOn an elliptic system related to desertification studies
dc.typejournal article
dc.volume.number108
dcterms.referencesAmann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18(4), 620–709 (1976) Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2007) Arcoya, D., Díaz, J.I., Tello, L.: S-shaped bifurcation branch in a quasilinear multivalued model arising in climatology. J. Differ. Equ. 149, 215–225 (1998) Dancer, E.N.: Global solution branches for positive mappings. Arch. Ration. Mech. Anal. 52, 181–192 (1973) Díaz, J.I.: Nonlinear Partial Differential Equations and Free Boundaries. Pitman, London (1985) Díaz, J.I., Hernández, J., Tello, L.: On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology. Math. Anal. Appl. 216(AY975691), 593–613 (1997) Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M., Meron, E.: A mathematical model of plants as ecosystem engineers. J. Theor. Biol. 244, 680–691 (2007) Goto, Y., Hilhorst, D., Meron, E., Temam, R.: Existence theorem for a model of dryland vegetation. Discrete Continu. Dyn. Syst. Ser. B 16(1), 197–224 (2011) Goto, Y.: Global attractors for a vegetation model. Asymptot. Anal. 74, 75–94 (2011) Meron, E.: Modeling dryland landscapes. Math. Model. Nat. Phenom. 6(1), 163–187 (2011) Sherratt, J.A., Lord, G.J.: Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor. Popul. Biol. 71, 1–11 (2007) Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. II/B. Springer, Berlin (1990)
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
140.pdf
Size:
174.22 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
A_184_RCM_DP_NEW.pdf
Size:
126.64 KB
Format:
Adobe Portable Document Format

Collections