Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The dδ–lemma for weakly Lefschetz symplectic manifold

dc.book.titleDifferential geometry and its applications
dc.contributor.authorFernández, M.
dc.contributor.authorMuñoz, Vicente
dc.contributor.authorUgarte, Luis
dc.contributor.editorBurei, Jarolim
dc.contributor.editorKowalski, Oldrich
dc.contributor.editorKrupka, Demeter
dc.contributor.editorSlovak, Jan
dc.date.accessioned2023-06-20T13:39:21Z
dc.date.available2023-06-20T13:39:21Z
dc.date.issued2005
dc.description9TH International Conference on Differential Geometry and its Applications.
dc.description.abstractFor a symplectic manifold (M, ω), not necessarily hard Lefschetz, we prove a version of the Merkulov dδ–lemma ([17, 4]). We also study the dδ–lemma and related cohomologies for compact symplectic solvmanifolds.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMCyT
dc.description.sponsorshipUPV
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21112
dc.identifier.isbn8086732630
dc.identifier.officialurlhttp://arxiv.org/pdf/math/0501259v1.pdf
dc.identifier.relatedurlhttp://arxiv.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53235
dc.language.isoeng
dc.page.final246
dc.page.initial229
dc.page.total639
dc.publication.placePrague, Czech Republic
dc.publisherMathematical Institute of Charles University in Prague
dc.relation.projectIDBFM2001-3778-C03-02/03
dc.relation.projectID00127.310-E-14813/2002
dc.relation.projectIDMTM2004-07090-C03-01
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleThe dδ–lemma for weakly Lefschetz symplectic manifold
dc.typebook part
dcterms.referencesC. Benson and C.S. Gordon, Kahler and symplectic structures on nilmanifolds, Topology 27 (1988),513–518. J.L. Brylinski, A differential complex for Poisson manifolds, J. Diff. Geom. 28 (1988), 93–114. G.R. Cavalcanti, The Lefschetz property, formality and blowing up in symplectic geometry, Preprint math.SG/0403067. G.R. Cavalcanti, New aspects of the ddc-lemma, Ph. D.Thesis, University of Oxford, 2004. M. Fern´andez, M. de Leon and M. Saralegui, A six dimensional compact symplectic solvmanifold without Kahler structures, Osaka J. Math. 33 (1996), 19–35. M. Fernandez and V. Muñoz, Formality of Donaldson submanifolds, Math. Zeit., To appear. M. Fernandez, V. Muñoz and L. Ugarte, Weakly Lefschetz symplectic manifolds, Preprint math.SG/0404479. V. Guillemin, Symplectic Hodge theory and the dδ–lemma, Preprint, Massachusets Institute of Technology, 2001. A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo 8 (1960), 298–331. R. Ibañez, Y. Rudyak, A. Tralle and L. Ugarte, On symplectically harmonic forms on 6–dimensional nilmanifolds, Comment. Math. Helv. 76 (2001), 89–109. J.L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in Elie Cartan et les Math. d’Aujour d’Hui, Asterisque hors-serie (1985), 251–271. P. Libermann, Sur le probleme d’equivalence de certaines structures infinitesimales regulieres, Ann.Mat. Pura Appl. 36 (1954), 27–120. P. Libermann and C. Marle, Symplectic Geometry and Analytical Mechanics, Kluwer, Dordrecht,1987. A. Lichnerowicz, Les varietes de Poisson et les algebres de Lie associees, J. Diff. Geom. 12 (1977),253–300. Y. Lin and R. Sjamaar, Equivariant symplectic Hodge theory and the dGδ–lemma, J. Symplectic Geom., To appear, Preprint math.SG/0310048. O.Mathieu, Harmonic cohomology classes of symplectic manifolds, Comment. Math. Helv. 70 (1995),1–9. S. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Internat. Math.Res. Notices 14 (1998), 723–733. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531-538. W.P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976),467–468. R.Wells, Differential analysis on complex manifolds. Second edition. Graduate Texts in Mathematics 65. Springer-Verlag, New York-Berlin, 1980. T. Yamada, Harmonic cohomology groups of compact symplectic nilmanifolds, Osaka J. Math. 39 (2002), 363–381. D. Yan, Hodge structure on symplectic manifolds, Adv. Math. 120 (1996), 143–154.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz43.pdf
Size:
211 KB
Format:
Adobe Portable Document Format