Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Impacts of green vegetation fraction derivation methods on regional climate simulations

dc.contributor.authorJiménez Gutiérrez, José Manuel
dc.contributor.authorValero Rodríguez, Francisco
dc.contributor.authorJérez, Sonia
dc.contributor.authorMontávez, Juan Pedro
dc.date.accessioned2023-06-17T13:28:58Z
dc.date.available2023-06-17T13:28:58Z
dc.date.issued2019-05-21
dc.description© The autors. We acknowledge all the institutions and communities that provided free software, R community, CDO (Climate Data Operators), GMT (Generic Mapping Tools), MM5, Gnuplot, gfortran as well as the institutions supplying data (ECMWF, NASA).
dc.description.abstractThe representation of vegetation in land surface models (LSM) is crucial for modeling atmospheric processes in regional climate models (RCMs). Vegetation is characterized by the green fractional vegetation cover (FVC) and/or the leaf area index (LAI) that are obtained from nearest difference vegetation index (NDVI) data. Most regional climate models use a constant FVC for each month and grid cell. In this work, three FVC datasets have been constructed using three methods: ZENG, WETZEL and GUTMAN. These datasets have been implemented in a RCM to explore, through sensitivity experiments over the Iberian Peninsula (IP), the effects of the differences among the FVC data-sets on the near surface temperature (T2m). Firstly, we noted that the selection of the NDVI database is of crucial importance, because there are important bias in mean and variability among them. The comparison between the three methods extracted from the same NDVI database, the global inventory modeling and mapping studies (GIMMS), reveals important differences reaching up to 12% in spatial average and and 35% locally. Such differences depend on the FVC magnitude and type of biome. The methods that use the frequency distribution of NDVI (ZENG and GUTMAN) are more similar, and the differences mainly depends on the land type. The comparison of the RCM experiments exhibits a not negligible effect of the FVC uncertainty on the monthly T2m values. Differences of 30% in FVC can produce bias of 1 ◦C in monthly T2m, although they depend on the time of the year. Therefore, the selection of a certain FVC dataset will introduce bias in T2m and will affect the annual cycle. On the other hand, fixing a FVC database, the use of synchronized FVC instead of climatological values produces differences up to 1 ◦C, that will modify the T2m interannual variability.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipInstituto de Matemática Interdisciplinar (IMI)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/57097
dc.identifier.doi10.3390/atmos10050281
dc.identifier.issn2073-4433
dc.identifier.officialurlhttp://dx.doi.org/10.3390/atmos10050281
dc.identifier.relatedurlhttps://www.mdpi.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13592
dc.issue.number5
dc.journal.titleAtmosphere
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.projectID(REPAIR-CGL2014-59677-R and ACEX-CGL2017-87921-R)
dc.relation.projectID(PCIN-2014-013-C07-04; PCIN2016-080; , CGL2016-78702)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu52
dc.subject.keywordLand-surface model
dc.subject.keywordSoil-moisture
dc.subject.keywordLos-Angeles
dc.subject.keywordCover data
dc.subject.keywordEta-model
dc.subject.keywordSensitivity
dc.subject.keywordNDVI
dc.subject.keywordImplementation
dc.subject.keywordEnvironment
dc.subject.keywordVariability
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleImpacts of green vegetation fraction derivation methods on regional climate simulations
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication552fa01a-13cf-4384-a0fa-468914cc2b06
relation.isAuthorOfPublication.latestForDiscovery552fa01a-13cf-4384-a0fa-468914cc2b06

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
valerorodriguez58libre+CC.pdf
Size:
6.68 MB
Format:
Adobe Portable Document Format

Collections