Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Incorporation of halloysite nanotubes into forsterite surface layer during plasma electrolytic oxidation of AM50 Mg alloy

dc.contributor.authorMingo, B.
dc.contributor.authorGuo, Y.
dc.contributor.authorNěmcová, A.
dc.contributor.authorGholinia, A.
dc.contributor.authorMohedano Sánchez, Marta
dc.contributor.authorSun, M.
dc.contributor.authorMatthews, A.
dc.contributor.authorYerokhin, A.
dc.date.accessioned2024-07-30T11:59:58Z
dc.date.available2024-07-30T11:59:58Z
dc.date.issued2019-03-10
dc.description.abstractThe increasing demand for high-performance lightweight metallic materials is driving an interest in Plasma Electrolytic Oxidation (PEO) as one of the most promising techniques for surface engineering of Mg. In order to enable smart and multifunctional performance, it can be beneficial to incorporate into ceramic PEO coatings nanocontainers to carry appropriate active and functionalising agents. In situ incorporation of nanocontainers is challenging since their integrity may be compromised by plasma discharge assisting coating formation. We studied incorporation of halloysite nanotubes (HNTs) as potential nanocontainers into forsterite, Mg2SiO4, formed during PEO processing of AM50 alloy at the frequency range of 100–5000 Hz. Detailed analysis of the coating microstructure, chemical and phase composition carried out by Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy, Transmission Kikuchi Diffraction and X-ray Diffraction enabled evaluation of a pattern of surface temperature evolution during current pulses underpinning the PEO process. Transient analysis revealed that at pulses longer than 10−4 s, the surface heating becomes affected by the metal substrate acting as a heat sink. As the pulse duration approaches 10−3 s, raising surface temperature and increasing thermal gradients across the coating cause crystallisation of forsterite and grain growth towards the surface; this triggers thermally induced degradation and decomposition of HNTs adsorbed on the surface. In contrast, at short pulse durations (2 × 10−5 s), the energy released is insufficient to induce forsterite crystallisation and incorporated HNTs are retained in their original tubular structure. Due to the fine porosity and good structural integrity, such coatings show enhanced corrosion resistance in saline solution. Strong correlations between surface thermodynamic conditions and evolution of coating microstructure disambiguate the fundamental mechanisms underlying incorporation of nanoparticles into growing PEO coatings, thus creating the basis for efficient design of PEO processes and development of novel smart and multifunctional coatings with potential applications in many industrial sectors.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationBeatriz Mingo, Yue Guo, Aneta Němcová, Ali Gholinia, Marta Mohedano, Ming Sun, Allan Matthews, Aleksey Yerokhin, Incorporation of halloysite nanotubes into forsterite surface layer during plasma electrolytic oxidation of AM50 Mg alloy, Electrochimica Acta, Volume 299, 2019, Pages 772-788, ISSN 0013-4686, https://doi.org/10.1016/j.electacta.2019.01.047.
dc.identifier.doi10.1016/j.electacta.2019.01.047
dc.identifier.officialurlhttps://doi.org/10.1016/j.electacta.2019.01.047
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S001346861930060X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/107241
dc.journal.titleElectrochimica Acta
dc.language.isoeng
dc.page.final788
dc.page.initial772
dc.publisherElsevier
dc.relation.projectIDThis work was supported by the European Research Council under the ERC Advanced Grant (320879 ‘IMPUNEP’). B. Mingo is grateful to The University of Manchester for the award of the Presidential Fellowship and M. Mohedano to MINECO (Spain) for financial support via Young Researchers Challenges Programme (Proyectos Retos Jovenes Investigadores, MAT2015-73355-JIN). Mr M. Gorbatkov is acknowledged for help with OES experiments.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu66
dc.subject.cdu620.1
dc.subject.keywordPlasma electrolytic oxidation
dc.subject.keywordHalloysite nanotube
dc.subject.keywordEffective temperature
dc.subject.keywordCorrosion
dc.subject.keywordElectrochemical impedance spectroscopy
dc.subject.ucmIngeniería química
dc.subject.ucmMateriales
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.subject.unesco3312 Tecnología de Materiales
dc.titleIncorporation of halloysite nanotubes into forsterite surface layer during plasma electrolytic oxidation of AM50 Mg alloy
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number299
dspace.entity.typePublication
relation.isAuthorOfPublication160ef5bd-2d04-4f6c-b028-cb7ce4cf8d38
relation.isAuthorOfPublication.latestForDiscovery160ef5bd-2d04-4f6c-b028-cb7ce4cf8d38

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Accepted_manuscript_Incorporation of halloysite nanotubes into forsterite (1).pdf
Size:
7.63 MB
Format:
Adobe Portable Document Format

Collections