FPGA-Based Multimodal Embedded Sensor System Integrating Low- and Mid-Level Vision
dc.contributor.author | Botella Juan, Guillermo | |
dc.contributor.author | Martín Hernández, José Antonio | |
dc.contributor.author | Santos Peñas, Matilde | |
dc.contributor.author | Meyer-Baese, Uwe | |
dc.date.accessioned | 2023-06-20T01:07:28Z | |
dc.date.available | 2023-06-20T01:07:28Z | |
dc.date.issued | 2011-08-22 | |
dc.description.abstract | Motion estimation is a low-level vision task that is especially relevant due to its wide range of applications in the real world. Many of the best motion estimation algorithms include some of the features that are found in mammalians, which would demand huge computational resources and therefore are not usually available in real-time. In this paper we present a novel bioinspired sensor based on the synergy between optical flow and orthogonal variant moments. The bioinspired sensor has been designed for Very Large Scale Integration (VLSI) using properties of the mammalian cortical motion pathway. This sensor combines low-level primitives (optical flow and image moments) in order to produce a mid-level vision abstraction layer. The results are described trough experiments showing the validity of the proposed system and an analysis of the computational resources and performance of the applied algorithms. | |
dc.description.department | Depto. de Arquitectura de Computadores y Automática | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/68463 | |
dc.identifier.doi | 10.3390/s110808164 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.officialurl | https://doi.org/10.3390/s110808164 | |
dc.identifier.relatedurl | https://www.mdpi.com/1424-8220/11/8/8164 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/43324 | |
dc.issue.number | 8 | |
dc.journal.title | Sensors | |
dc.language.iso | eng | |
dc.page.final | 8179 | |
dc.page.initial | 8164 | |
dc.publisher | MDPI | |
dc.relation.projectID | DPI2009-14552-C02-01 | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.keyword | Bio-inspired systems | |
dc.subject.keyword | machine vision | |
dc.subject.keyword | optical flow | |
dc.subject.keyword | orthogonal variant moments | |
dc.subject.keyword | VLSI | |
dc.subject.ucm | Inteligencia artificial (Informática) | |
dc.subject.ucm | Sistemas expertos | |
dc.subject.unesco | 1203.04 Inteligencia Artificial | |
dc.title | FPGA-Based Multimodal Embedded Sensor System Integrating Low- and Mid-Level Vision | |
dc.type | journal article | |
dc.volume.number | 11 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f94b32c6-dff7-4d98-9c7a-00aad48c2b6a | |
relation.isAuthorOfPublication | 99cac82a-8d31-45a5-bb8d-8248a4d6fe7f | |
relation.isAuthorOfPublication.latestForDiscovery | f94b32c6-dff7-4d98-9c7a-00aad48c2b6a |
Download
Original bundle
1 - 1 of 1