Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

FPGA-Based Multimodal Embedded Sensor System Integrating Low- and Mid-Level Vision

dc.contributor.authorBotella Juan, Guillermo
dc.contributor.authorMartín Hernández, José Antonio
dc.contributor.authorSantos Peñas, Matilde
dc.contributor.authorMeyer-Baese, Uwe
dc.date.accessioned2023-06-20T01:07:28Z
dc.date.available2023-06-20T01:07:28Z
dc.date.issued2011-08-22
dc.description.abstractMotion estimation is a low-level vision task that is especially relevant due to its wide range of applications in the real world. Many of the best motion estimation algorithms include some of the features that are found in mammalians, which would demand huge computational resources and therefore are not usually available in real-time. In this paper we present a novel bioinspired sensor based on the synergy between optical flow and orthogonal variant moments. The bioinspired sensor has been designed for Very Large Scale Integration (VLSI) using properties of the mammalian cortical motion pathway. This sensor combines low-level primitives (optical flow and image moments) in order to produce a mid-level vision abstraction layer. The results are described trough experiments showing the validity of the proposed system and an analysis of the computational resources and performance of the applied algorithms.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/68463
dc.identifier.doi10.3390/s110808164
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s110808164
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/11/8/8164
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43324
dc.issue.number8
dc.journal.titleSensors
dc.language.isoeng
dc.page.final8179
dc.page.initial8164
dc.publisherMDPI
dc.relation.projectIDDPI2009-14552-C02-01
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordBio-inspired systems
dc.subject.keywordmachine vision
dc.subject.keywordoptical flow
dc.subject.keywordorthogonal variant moments
dc.subject.keywordVLSI
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmSistemas expertos
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleFPGA-Based Multimodal Embedded Sensor System Integrating Low- and Mid-Level Vision
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationf94b32c6-dff7-4d98-9c7a-00aad48c2b6a
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscoveryf94b32c6-dff7-4d98-9c7a-00aad48c2b6a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-11-08164.pdf
Size:
518.91 KB
Format:
Adobe Portable Document Format

Collections