Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Validation Employing Convolutional Neural Network for the Radiographic Detection of Absence or Presence of Teeth

dc.contributor.authorPrados Privado, María
dc.contributor.authorGarcía Villalón, Javier
dc.contributor.authorBlázquez Torres, Antonio
dc.contributor.authorMartínez Martínez, Carlos Hugo
dc.contributor.authorIvorra, Carlos
dc.date.accessioned2023-06-17T08:23:55Z
dc.date.available2023-06-17T08:23:55Z
dc.date.issued2021-03-12
dc.description.abstractDental radiography plays an important role in clinical diagnosis, treatment and making decisions. In recent years, efforts have been made on developing techniques to detect objects in images. The aim of this study was to detect the absence or presence of teeth using an effective convolutional neural network, which reduces calculation times and has success rates greater than 95%. A total of 8000 dental panoramic images were collected. Each image and each tooth was categorized, independently and manually, by two experts with more than three years of experience in general dentistry. The neural network used consists of two main layers: object detection and classification, which is the support of the previous one. A Matterport Mask RCNN was employed in the object detection. A ResNet (Atrous Convolution) was employed in the classification layer. The neural model achieved a total loss of 0.76% (accuracy of 99.24%). The architecture used in the present study returned an almost perfect accuracy in detecting teeth on images from different devices and different pathologies and ages.
dc.description.departmentDepto. de Medicina
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipAsisa Dental S.A.U.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/71304
dc.identifier.doi10.3390/jcm10061186
dc.identifier.issn2077-0383
dc.identifier.officialurlhttps://doi.org/10.3390/jcm10061186
dc.identifier.relatedurlhttps://www.mdpi.com/2077-0383/10/6/1186/htm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6962
dc.issue.number6
dc.journal.titleJournal of Clinical Medicine
dc.language.isoeng
dc.page.initial1186
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordteeth detection
dc.subject.keywordneural network
dc.subject.keywordpanoramic images
dc.subject.ucmOdontología (Medicina)
dc.subject.ucmOdontología (Odontología)
dc.subject.unesco3213.13 Ortodoncia-Estomatología
dc.titleA Validation Employing Convolutional Neural Network for the Radiographic Detection of Absence or Presence of Teeth
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication0e17a728-0233-4f21-a5a6-c3021afe38ad
relation.isAuthorOfPublication.latestForDiscovery0e17a728-0233-4f21-a5a6-c3021afe38ad

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jcm-10-01186-v2.pdf
Size:
3.03 MB
Format:
Adobe Portable Document Format

Collections