Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the stability of the universal quotient bundle restricted to congruences of low degree of G(1,3)

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Scuola Normale Superiore (Pisa)
Citations
Google Scholar

Citation

Abstract

We study the semistability of Q vertical bar s, the universal quotient bundle on G(1,3) restricted to any smooth surface S (called congruence). Specifically, we deduce geometric conditions for a congruence S, depending on the slope of a saturated linear subsheaf of Q vertical bar s. Moreover, we check that the Dolgachev-Reider Conjecture (i.e. the semistability of Q vertical bar s for nondegenerate congruences S) is true for all the congruences of degree less than or equal to 10. Also, when the degree of a congruence S is less than or equal to 9, we compute the highest slope reached by the linear subsheaves of Q vertical bar s.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections