Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A coloring fuzzy graph approach for image classification

dc.contributor.authorGómez González, Daniel
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorYáñez Gestoso, Francisco Javier
dc.date.accessioned2023-06-20T09:39:46Z
dc.date.available2023-06-20T09:39:46Z
dc.date.issued2006
dc.description.abstractOne of the main problems in practice is the difficulty in dealing with membership functions. Many decision makers ask for a graphical representation to help them to visualize results. In this paper, we point out that some useful tools for fuzzy classification can be derived from fuzzy coloring procedures. In particular, we bring here a crisp grey coloring algorithm based upon a sequential application of a basic black and white binary coloring procedure, already introduced in a previous paper [D. Gomez, J. Montero, J. Yañez, C. Poidomani, A graph coloring algorithm approach for image segmentation, Omega, in press]. In this article, the image is conceived as a fuzzy graph defined on the set of pixels where fuzzy edges represent the distance between pixels. In this way,we can obtain a more flexible hierarchical structure of colors, which in turn should give useful hints about those classes with unclear boundaries.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16677
dc.identifier.citationGomez, D., Montero, J., Yanez, J.: A coloring fuzzy graph approach for image classification. Information Sciences. 176, 3645-3657 (2006). https://doi.org/10.1016/j.ins.2006.01.006
dc.identifier.doi10.1016/j.ins.2006.01.006
dc.identifier.issn0020-0255
dc.identifier.officialurlhttps//doi.org/10.1016/j.ins.2006.01.006
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0020025506000399
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/journal/00200255
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50136
dc.issue.number24
dc.journal.titleInformation Sciences
dc.language.isoeng
dc.page.final3657
dc.page.initial3645
dc.publisherElsevier Science Inc
dc.relation.projectIDBFM2002-0281
dc.relation.projectIDMTM2005-08982-C04
dc.rights.accessRightsrestricted access
dc.subject.cdu004.8
dc.subject.keywordImage classification
dc.subject.keywordDecision making processes
dc.subject.keywordColoring problem
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleA coloring fuzzy graph approach for image classificationen
dc.typejournal article
dc.volume.number176
dcterms.referencesA. Amo, D. Gomez, J. Montero, G. Biging, Relevance and redundancy in fuzzy classification systems, Mathware and Soft Computing 8 (2001) 203–216. A. Amo, J. Montero, V. Cutello, On the principles of fuzzy classification, in: R.N. Dave, T. Sudkamp (Eds.),Proceedings NAFIPS Conference, IEEE Press,Piscataway, NJ, 1999, pp.675–679. A. Amo, J. Montero, G. Biging, Classifying pixels by means of fuzzy relations, International Journal on General Systems 29 (2000) 605–621. A. Amo, J. Montero, G. Biging, V. Cutello, Fuzzy classification systems, European Journal of Operational Research 156 (2004) 459–507. A. Amo, J. Montero, A. Fernandez, M. Lopez, J. Tordesillas, G. Biging, Spectral fuzzy classification: an application, IEEE Transactions on Systems Man and Cybernetics (C) 32 (2002) 42–48. S. Bandyopadhyay, U. Maulik, An evolutionary technique based on k-means algorithm for optimal clustering in RN , Information Sciences 108 (1998) 219–240. J.C. Bezdek, J.D. Harris, Fuzzy partitions and relations: an axiomatic basis for clustering,Fuzzy Sets and Systems 1 (1978) 111–127. H.J. Caulfield, J. Fu, S. Yoo, Artificial color image logic, Information Sciences 167 (2004) 1–7. H.D. Cheng, M. Miyojim, Automatic pavement distress detection system, Information Sciences 108 (1998) 219–240. D. Dubois, H. Prade, Fuzzy Sets and Systems, Theory and Applications, Academic Press, New York, 1980. D. Dubois, H. Prade, Ranking fuzzy numbers in the setting of possibility theory, Information Sciences 30 (1983) 183–224. G. Facchinetti, R.G. Ricci, A characterization of a general class of ranking functions on triangular fuzzy numbers, Fuzzy Sets and Systems 146 (2004) 297–312. D. Feng, S. Wenkang, C. Liangzhou, D. Yong, Z. Zhenfu, Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization,Pattern Recognition Letters 26 (2005) 597–603. G.M. Foody, The continuum of classification fuzziness in thematics mapping, Photogrammetric Engineering and Remote Sensing 65 (1999) 443–451. D. Gomez, J. Montero, J. Yañez, C. Poidomani, A graph coloring algorithm approach for image segmentation, Omega, in press.
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication5ce22aab-a4c1-4dfe-b8f9-78e09cbd2878
relation.isAuthorOfPublication.latestForDiscovery4dcf8c54-8545-4232-8acf-c163330fd0fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero40.pdf
Size:
314.56 KB
Format:
Adobe Portable Document Format

Collections