Spaces of vector-valued continuous functions with the Dunford-Pettis property. (Spanish: Espacios de funciones continuas vectoriales con la propiedad de Dunford-Pettis).
dc.contributor.author | Bombal Gordón, Fernando | |
dc.date.accessioned | 2023-06-21T02:03:53Z | |
dc.date.available | 2023-06-21T02:03:53Z | |
dc.date.issued | 1986 | |
dc.description.abstract | A Banach space E has the Dunford-Pettis property (D.P.P.) if for every pair of sequences(x n ) in E and (x ′n ) in E ′, both weakly convergent to zero, we have that (x′n (x n )) tends to zero. P. Cembranos [Bull. Austral. Math. Soc. 28 (1983), no. 2, 175–186;] has proved that, if K is a compact Hausdorff dispersed space, then the following holds: For every Banach E with the D.P.P., the Banach space C(K,E) of continuous functions from K into E has the D.P.P. In the note under review the author proves that this property characterizes compact dispersed spaces. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/18125 | |
dc.identifier.issn | 0034-0596 | |
dc.identifier.officialurl | http://www.rac.es/ficheros/Revistas/REV_20091030_00838.pdf | |
dc.identifier.relatedurl | http://www.rac.es/0/0_1.php | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64753 | |
dc.issue.number | 4 | |
dc.journal.title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid | |
dc.language.iso | spa | |
dc.page.final | 608 | |
dc.page.initial | 607 | |
dc.publisher | Real Academia de Ciencias Exactas, Físicas y Naturales | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Banach spaces | |
dc.subject.keyword | Dunford-Pettis property | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | Spaces of vector-valued continuous functions with the Dunford-Pettis property. (Spanish: Espacios de funciones continuas vectoriales con la propiedad de Dunford-Pettis). | |
dc.type | journal article | |
dc.volume.number | 80 | |
dcterms.references | P. CEMBRANOS: «On Banach spaces of vector valued continuous functions», Bull. Aust.Math. Soc., 28, 175-186 (1983). J.DIESTEL: «Vector measures»,American Math. Soc.,Providence, R.I. (1977). J.DIESTEL:«A survey of results related to the Dunford-Pettis property»,en «Proceedings of the conference on Integration,Topology and Geometry in Linear spaces»,Amer. Math. Soc., Providence, R. I. (1979). A. GROTHENDIECK: «Sur les aplications linéaires faiblement compactes d'espaces du type C(K)», Cañad. J. Math., 5, 129-173 (1953). H. E. LACEY: The isometric theory of classical Banach spaces, Springer, Berlin (1974). M. TALAGRAND: «La propriété de Dunford-Pettis dans C(K, E) et Ü (E)», Israel J. of Math., 44, 317-321 (1983). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1