Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Radiation dynamics in homogeneous plasma

dc.contributor.authorEscobedo, M.
dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T16:59:45Z
dc.date.available2023-06-20T16:59:45Z
dc.date.issued1999-02-15
dc.description.abstractWe study in this paper the asymptotic behaviour of solutions of a nonlinear Fokker-Plank equation. Such an equation describes the evolution of radiation for a gas of photons, which interacts with electrons by means of Compton scattering and Bremsstrahlung radiation. Assuming that a suitable adimensional parameter ε (which measures the strength of the Bremsstrahlung effect) is small enough, we show that the problem considered has two natural timescales. For times t = O(1), the dynamics is conducted by that of a reduced problem, corresponding to setting ε = O in the original equations. Solutions of that problem may blow up in finite time, and the total number of photons is no longer preserved after the singularity formation. Nevertheless, solutions of this problem can be continued for all times, if defined in a suitable sense. When t --> infinity, solutions of such a modified problem converge towards a Bose-Einstein distribution with a suitable (in general nonzero) chemical potential. However, at times of order t = O((ε|log ε|)(-2/3)), the Bremsstrahlung term becomes dominant at low frequencies, and drives the photon distribution to approach to a Planck distribution as time goes to infinity.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.sponsorshipEEC Contract ERB FMRX
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16696
dc.identifier.doi10.1016/S0167-2789(98)00255-3
dc.identifier.issn0167-2789
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0167278998002553
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57591
dc.issue.number3-4
dc.journal.titlePhysica D-Nonlinear Phenomena
dc.language.isoeng
dc.page.final260
dc.page.initial236
dc.publisherElsevier
dc.relation.projectIDPB96-0663
dc.relation.projectIDERB FMRX CT960033 HCL
dc.relation.projectIDPB96-0614
dc.rights.accessRightsrestricted access
dc.subject.cdu530.1
dc.subject.cdu539.1
dc.subject.cdu517.95
dc.subject.keywordRadiation
dc.subject.keywordFokker-Plank equation
dc.subject.keywordBremsstrahlung effect
dc.subject.ucmFísica matemática
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmFísica nuclear
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleRadiation dynamics in homogeneous plasma
dc.typejournal article
dc.volume.number126
dcterms.referencesC.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Mc Graw Hill, New York, 1978. G. Cooper, Compton Fokker–Planck equation for hot plasmas, Phys. Rev. D 3 (1971) 231–22316. R.E. Caflisch, C.D. Levermore, Equilibrium for radiation in a homogeneous plasma, Phys. Fluids 29 (1986) 748–752. H. Dreicer, Kinetic theory of an electron–photon gas, Phys. Fluids 7 (1964) 735–753. M. Escobedo, M.A. Herrero, J.J.L. Velázquez, A nonlinear Fokker–Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma, Trans. Amer. Math. Soc. 350 (1998) 3837–3901. A. Friedman, Partial differential equations of parabolic type, Krieger, New York, 1983. A.S. Kompaneets, The establishment of thermal equilibrium between quanta and electrons, Soviet Phys. JETP 4 (1957) 730–737. P.J.E. Peebles, Principles of Physical Cosmology, Princeton University Press, Princeton, NT, 1993. R.Weymann, Diffusion approximation for a photon gas interacting with a plasma via the Compton effect, Phys. Fluids 8 (1965) 2112–2114. Ya.B. Zel’dovich, D. Novikov, Relativistic Astrophysics, vol. 2: The Structure and Evolution of the Universe, The University of Chicago Press, Chicago, 1983.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero26.pdf
Size:
224.78 KB
Format:
Adobe Portable Document Format

Collections