Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hybrid Seiberg-Witten map, its θ-exact expansion, and the antifield formalism

dc.contributor.authorPérez Martín, Carmelo
dc.contributor.authorNavarro, David G.
dc.date.accessioned2023-06-18T06:48:02Z
dc.date.available2023-06-18T06:48:02Z
dc.date.issued2015-09-15
dc.description© 2015 American Physical Society. This work has been financially supported in part by MICINN through Grant No. FPA2011-24560 and MPNS COST Action MP1405.
dc.description.abstractWe deduce an evolution equation for an arbitrary hybrid Seiberg-Witten map for compact gauge groups by using the antifield formalism. We show how this evolution equation can be used to obtain the hybrid Seiberg-Witten map as an expansion, which is θ-exact, in the number of ordinary fields. We compute explicitly this expansion up to order three in the number of ordinary gauge fields and then particularize it to case of the Higgs of the noncommutative standard model.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN), España
dc.description.sponsorshipMPNS European Cooperaition in Science and Technology COST Action
dc.description.sponsorshipUnión Europea
dc.description.sponsorshipEU Framework Programme Horizon 2020
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33856
dc.identifier.doi10.1103/PhysRevD.92.065026
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.92.065026
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24228
dc.issue.number6
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Society
dc.relation.projectIDFPA2011-24560
dc.relation.projectIDMP1405
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordNoncommutative space-time
dc.subject.keywordGauge-theory
dc.subject.keywordStandard model
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleHybrid Seiberg-Witten map, its θ-exact expansion, and the antifield formalism
dc.typejournal article
dc.volume.number92
dcterms.references[1] N. Seiberg and E. Witten, String theory and noncommutative geometry, J. High Energy Phys. 09 (1999) 032. [2] J. Madore, S. Schraml, P. Schupp, and J.Wess, Gauge theory on noncommutative spaces, Eur. Phys. J. C 16, 161 (2000). [3] B. Jurco, S. Schraml, P. Schupp, and J. Wess, Enveloping algebra valued gauge transformations for non-Abelian gauge groups on noncommutative spaces, Eur. Phys. J. C 17, 521 (2000). [4] B. Jurco, L. Moller, S. Schraml, P. Schupp, and J. Wess, Construction of non-Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C 21, 383 (2001). [5] V. V. Khoze and J. Levell, Noncommutative standard modelling, J. High Energy Phys. 09 (2004) 019. [6] X. Calmet, B. Jurco, P. Schupp, J. Wess, and M. Wohlgenannt, The standard model on noncommutative space-time, Eur. Phys. J. C 23, 363 (2002). [7] B. Melic, K. Passek-Kumericki, and J. Trampetic, K → pi γ decay and space-time noncommutativity, Phys. Rev. D 72, 057502 (2005). [8] A. Alboteanu, T. Ohl, and R. Ruckl, Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74, 096004 (2006). [9] M. Buric, D. Latas, V. Radovanovic, and J. Trampetic, Nonzero Z → γ gamma decays in the renormalizable gauge sector of the noncommutative standard model, Phys. Rev. D 75, 097701 (2007). [10] C. Tamarit and J. Trampetic, Noncommutative fermions and quarkonia decays, Phys. Rev. D 79, 025020 (2009). [11] J. Trampetic, Enveloping algebra Noncommutative SM: Renormalisability and High Energy Physics Phenomenology, arXiv:0901.1265. [12] M. Haghighat, N. Okada, and A. Stern, Location and direction dependent effects in collider physics from noncommutativity, Phys. Rev. D 82, 016007 (2010). [13] W.Wang, F. Tian, and Z. M. Sheng, Higgsstrahlung and pair production in eþe− collision in the noncommutative standard model, Phys. Rev. D 84, 045012 (2011). [14] S. Yaser Ayazi, S. Esmaeili, and M. Mohammadi- Najafabadi, Single top quark production in t-channel at the LHC in noncommutative space-time, Phys. Lett. B 712, 93 (2012). [15] S. Aghababaei, M. Haghighat, and A. Kheirandish, Lorentz violation in the Higgs sector and noncommutative standard model, Phys. Rev. D 87, 047703 (2013). [16] M. Ghasemkhani, R. Goldouzian, H. Khanpour, M. K. Yanehsari, and M. Mohammadi Najafabadi, Higgs production in e−eþ collisions as a probe of noncommutativity, Prog. Theor. Exp. Phys. 2014, 081B01 (2014). [17] M. Haghighat and M. Khorsandi, Hydrogen and muonichydrogen atomic spectra in non-commutative space-time, Eur. Phys. J. C 75, 4 (2015). [18] R. Fresneda, D. M. Gitman, and A. E. Shabad, Photon propagation in noncommutative QED with constant external field, Phys. Rev. D 91, 085005 (2015). [19] P. Aschieri, B. Jurco, P. Schupp, and J. Wess, Noncommutative GUTs, standard model and C,P,T, Nucl. Phys. B651, 45 (2003). [20] C. P. Martin, The minimal, and the new minimal supersymmetric grand unified theories on noncommutative space-time, Classical Quantum Gravity 30, 155019 (2013). [21] C. P. Martin, SO(10) GUTs with large tensor representations on noncommutative space-time, Phys. Rev. D 89, 065018 (2014). [22] X. Calmet and A. Kobakhidze, Second order noncommutative corrections to gravity, Phys. Rev. D 74, 047702 (2006). [23] S. Marculescu and F. Ruiz Ruiz, Seiberg-Witten maps for SO(1,3) gauge invariance and deformations of gravity, Phys. Rev. D 79, 025004 (2009). [24] P. Aschieri and L. Castellani, Noncommutative gravity coupled to fermions: Second order expansion via Seiberg- Witten map, J. High Energy Phys. 07 (2012) 184. [25] P. Aschieri, L. Castellani, and M. Dimitrijevic, Noncommutative gravity at second order via Seiberg-Witten map, Phys. Rev. D 87, 024017 (2013). [26] M. Dimitrijevic and V. Radovanovic, Noncommutative SO(2,3) gauge theory and noncommutative gravity, Phys. Rev. D 89, 125021 (2014). [27] P. Aschieri and L. Castellani, Noncommutative Chern- Simons gauge and gravity theories and their geometric Seiberg-Witten map, J. High Energy Phys. 11 (2014) 103. [28] S. Minwalla, M. Van Raamsdonk, and N. Seiberg, Noncommutative perturbative dynamics, J. High Energy Phys. 02 (2000) 020. [29] M. Hayakawa, Perturbative analysis on infrared aspects of noncommutative QED on R4, Phys. Lett. B 478, 394 (2000). [30] P. Schupp and J. You, UV/IR mixing in noncommutative QED defined by Seiberg-Witten map, J. High Energy Phys. 08 (2008) 107. [31] R. Horvat, D. Kekez, P. Schupp, J. Trampetic, and J. You, Photon-neutrino interaction in theta-exact covariant noncommutative field theory, Phys. Rev. D 84, 045004 (2011). [32] R. Horvat, A. Ilakovac, P. Schupp, J. Trampetic, and J. Y. You, Yukawa couplings and seesaw neutrino masses in noncommutative gauge theory, Phys. Lett. B 715, 340 (2012). [33] R. Horvat, A. Ilakovac, P. Schupp, J. Trampetic, and J. You, Neutrino propagation in noncommutative spacetimes, J. High Energy Phys. 04 (2012) 108. [34] R. Horvat, A. Ilakovac, D. Kekez, J. Trampetic, and J. You, Forbidden and invisible Z boson decays in a covariant θ-exact noncommutative standard model, J. Phys. G 41, 055007 (2014). [35] R. Horvat, A. Ilakovac, J. Trampetic, and J. You, Selfenergies on deformed spacetimes, J. High Energy Phys. 11 (2013) 071. [36] J. Trampetic and J. You, The theta-exact Seiberg-Witten maps at the e3 order, Phys. Rev. D 91, 125027 (2015). [37] C. P. Martin, Computing the θ-exact Seiberg-Witten map for arbitrary gauge groups, Phys. Rev. D 86, 065010 (2012). [38] G. Barnich, M. A. Grigoriev, and M. Henneaux, Seiberg-Witten maps from the point of view of consistent deformations of gauge theories, J. High Energy Phys. 10 (2001) 004. [39] G. Barnich, F. Brandt, and M. Grigoriev, Seiberg-Witten maps and noncommutative Yang-Mills theories for arbitrary gauge groups, J. High Energy Phys. 08 (2002) 023. [40] G. Barnich, F. Brandt, and M. Grigoriev, Seiberg-Witten maps in the context of the antifield formalism, Fortsch. Phys. 50, 825 (2002). [41] G. Barnich, F. Brandt, and M. Grigoriev, Local BRST cohomology and Seiberg-Witten maps in noncommutative Yang-Mills theory, Nucl. Phys. B677, 503 (2004). [42] J. Gomis, K. Kamimura, and T. Mateos, Gauge and BRST generators for space-time noncommutative U(1) theory, J. High Energy Phys. 03 (2001) 010. [43] D. Brace, B. L. Cerchiai, A. F. Pasqua, U. Varadarajan, and B. Zumino, A cohomological approach to the non-Abelian Seiberg-Witten map, J. High Energy Phys. 06 (2001) 047. [44] M. Picariello, A. Quadri, and S. P. Sorella, Chern-Simons in the Seiberg-Witten map for noncommutative Abelian gauge theories in 4-D, J. High Energy Phys. 01 (2002) 045. [45] K. Ulker and B. Yapiskan, Seiberg-Witten maps to all orders, Phys. Rev. D 77, 065006 (2008). [46] P. Schupp, Non-Abelian gauge theory on noncommutative spaces, arXiv:hep-th/0111038. [47] C. P. Martin, Yukawa terms in noncommutative SO(10) and E6 GUTs, Phys. Rev. D 82, 085020 (2010). [48] F. Brandt, C. P. Martin, and F. R. Ruiz, Anomaly freedom in Seiberg-Witten noncommutative gauge theories, J. High Energy Phys. 07 (2003) 068. [49] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, USA, 1992), p. 520. [50] J. Gomis, J. Paris, and S. Samuel, Antibracket, antifields and gauge theory quantization, Phys. Rep. 259, 1 (1995).
dspace.entity.typePublication
relation.isAuthorOfPublicationbf7276d2-1dee-4422-a116-e02a2b8b0ba3
relation.isAuthorOfPublication.latestForDiscoverybf7276d2-1dee-4422-a116-e02a2b8b0ba3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PérezMartínCarmelo 42 LIBRE.pdf
Size:
260.41 KB
Format:
Adobe Portable Document Format

Collections