Coherence-polarization properties of fields radiated from transversely periodic electromagnetic sources

Thumbnail Image
Full text at PDC
Publication Date
Santarsiero, Massimo
Gori, Franco
González de Sande, Juan Carlos
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
IOP Publishing, Ltd.
Google Scholar
Research Projects
Organizational Units
Journal Issue
Planar electromagnetic sources characterized by a periodic variation of their beam coherence-polarization matrix are investigated, as far as the polarization features of the radiated fields are concerned, within the framework of the paraxial approximation. A propagation scheme based on plane-wave decomposition leads to a longitudinal periodicity of the polarization properties of the field, thus extending the Talbot effect to the case of partially coherent electromagnetic sources. The polarization features of beams radiated from sources of this type are illustrated by means of simple examples. In particular, it is shown that completely unpolarized sources with uniform intensity profiles can be easily realized, for which the propagated field becomes perfectly polarized across some transverse planes, and vice versa.
©2013 IOP Publishing Ltd
[1] Talbot H F. 1836 Facts relating to optical science Phil. Mag. 9 401–7. [2] Lohmann A W and Silva D E. 1971 An interferometer based on the Talbot effect Opt. Commun. 2 413–5. [3] Patorski K 1989. The self-imaging phenomenon and its applications Progress in Optics vol 27, ed E Wolf (Amsterdam: North-Holland) pp 3–108. [4] Noponen E and Turunen T 1992. Electromagnetic theory of Talbot imaging Opt. Commun. 98 132–40. [5] Oreb B F and Dorsch R G 1994. Profilometry by phase-shifted Talbot images Appl. Opt. 33 7955–62. [6] Arrizón V, Tepichin E, Ortiz-Gutiérrez M and Lohmann A W 1996. Fresnel diffraction at 1=4 of the Talbot distance of an anisotropic grating Opt. Commun. 127 171–5. [7] Wei S, Wu S, Kao I and Chiang F P 1998. Measurement of wafer surface using shadow moiré technique with Talbot effect J. Electron. Packag. 120 166–70. [8] Tebaldi M, Rueda P J E and Bolognini N 2000. Talbot interferometer based on a birefringence grating Opt. Commun. 185 65–76. [9] Tervo J and Turunen J 2001. Transverse and longitudinal periodicities in fields produced by polarization gratings Opt. Commun. 190 51–7. [10] Bomzon Z, Niv A, Biener G, Kleiner V and Hasman E 2002. Polarization Talbot self-imaging with computer-generated, space-variant subwavelength dielectric gratings Appl. Opt. 41 5218–22. [11] Schirripa-Spagnolo G, Ambrosini D and Paoletti D 2002. Displacement measurement using the Talbot effect with a Ronchi grating J. Opt. A: Pure Appl. Opt. 4 S376–80. [12] Zhang Y, Yao X, Yuan C, Li P, Yuan J, Feng W, Jia S and Zhang Y 2012. Controllable multiwave mixing Talbot effect IEEE Photon. J. 4 2057–65. [13] Lau E 1948. Beugungserscheinungen an Doppelrastern Ann. Phys. 6 417–23. [14] Gori F 1983. Lau effect and coherence theory Opt. Commun. 31 4–8. [15] Lohmann A W and Ojeda-Castañeda J 1983. Spatial periodicities in partially coherent fields Opt. Acta: Int. J. Opt. 30 475–9. [16] Indebetouw G 1984. Propagation of spatially periodic wavefields Opt. Acta: Int. J. Opt. 31 531–9. [17] Liu L 1988. Partially coherent diffraction effect between Lau and Talbot effects J. Opt. Soc. Am. A 5 1709–16. [18] Turunen J, Vasara A and Friberg A T 1991. Propagation invariance and self-imaging in variable-coherence optics J. Opt. Soc. Am. A 8 282–9. [19] Lohmann A W, Mendlovic D and Shabtay G 1998. Talbot (1836), Montgomery (1967), Lau (1948) and Wolf (1955) on periodicity in optics Pure Appl. Opt. 7 1121–4. [20] Teng S, Liu L, Zu J, Luan Z and Liu D 2003. Uniform theory of the Talbot effect with partially coherent light illumination J. Opt. Soc. Am. A 20 1747–54. [21] Jahns J and Lohmann A W 2009. Optical wavefields with lateral and longitudinal periodicity Appl. Opt. 48 3438–45. [22] Gori F, Santarsiero M, Vicalvi S, Borghi R and Guattari G 1998. Beam coherence–polarization matrix Pure Appl. Opt. 7 941–51. [23] Wolf E 2003. Unified theory of coherence and polarization of random electromagnetic beams Phys. Lett. A 312 263–7. [24] Gori F, Santarsiero M, Borghi R and Piquero G 2000. Use of the van Cittert–Zernike theorem for partially polarized sources Opt. Lett. 25 1291–3. [25] Agrawal G P and Wolf E 2000. Propagation-induced polarization changes in partially coherent optical beams J. Opt. Soc. Am. A 17 2019–23. [26] Gori F, Santarsiero M, Piquero G, Borghi R, Mondello A and Simon R 2001. Partially polarized Gaussian Schell-model beams J. Opt. A: Pure Appl. Opt. 3 1–9. [27] Piquero G, Gori F, Romanini P, Santarsiero M, Borghi R and Mondello A 2002. Synthesis of partially polarized Gaussian Schell-model sources Opt. Commun. 208 9–16. [28] Tervo J 2003. Azimuthal polarization and partial coherence J. Opt. Soc. Am. A 20 1974–80. [29] Gori F, Santarsiero M, Borghi R and Wolf E 2006. Effects of coherence on the degree of polarization in a Young interference pattern Opt. Lett. 31 688–90. [30] Martínez-Herrero R and Mejías P M 2007. Electromagnetic fields that remain totally polarized under propagation Opt. Commun. 279 20–2. [31] Wolf E 2007. Polarization invariance in beam propagation Opt. Lett. 32 3400–1. [32] Salem M and Wolf E 2008. Coherence-induced polarization changes in light beams Opt. Lett. 33 1180–2. [33] Gori F 2008. Partially correlated sources with complete polarization Opt. Lett. 33 2818–20. [34] Gori F, Tervo J and Turunen J 2009. Correlation matrices of completely unpolarized beams Opt. Lett. 34 1447–9. [35] Martínez-Herrero R, Mejías P M and Piquero G 2009. Characterization of Partially Polarized Light Fields (Springer Series in Optical Sciences vol 147) (Berlin: Springer-Verlag). [36] Visser T D, Kuebel D, Lahiri M, Shirai T and Wolf E 2009. Unpolarized light beams with different coherence properties J. Mod. Opt. 56 1369–74. [37] Martínez-Herrero R and Mejías P M 2010. On the propagation of random electromagnetic fields with position-independent stochastic behavior Opt. Commun. 283 4467–9. [38] Ramírez-Sánchez V, Piquero G and Santarsiero M 2010. Synthesis and characterization of partially coherent beams with propagation-invariant transverse polarization pattern Opt. Commun. 283 4484–9. [39] Zhang R, Wang X, Cheng X and Qiu Z 2010. Polarization distribution control of anisotropic electromagnetic Gaussian Schell-model beams on free propagation by exploiting correlation properties at the source plane J. Opt. Soc. Am. A 27 2496–505. [40] Vidal I, Fonseca E J S and Hickmann J M 2011. Light polarization control during free-space propagation using coherence Phys. Rev. A 84 033836. [41] Tong Z and Korotkova O 2012. Electromagnetic nonuniformly correlated beams J. Opt. Soc. Am. A 29 2154–8. [42] Gori F 1999. Measuring Stokes parameters by means of a polarization grating Opt. Lett. 24 584–6 [43] Piquero G, Borghi R and Santarsiero M 2001. Gaussian Schell-model beams propagating through polarization gratings J. Opt. Soc. Am. A 18 1399–405. [44] Piquero G, Borghi R, Mondello A and Santarsiero M 2001. Far field of beams generated by quasi-homogeneous sources passing through polarization gratings Opt. Commun. 195 339–50. [45] de Sande J C G, Santarsiero M, Piquero G and Gori F 2012. Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer Opt. Express 20 27348–60. [46] Wolf E 2007. Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press). [47] Gori F, Guattari G, Palma C and Padovani C 1988. Specular cross-spectral density functions Opt. Commun. 68 239–43. [48] Setälä J, Tervo J and Friberg A T 2006. Contrasts of Stokes parameters in Young’s interference experiment and electromagnetic degree of coherence Opt. Lett. 31 2669–71.