Global homeomorphisms and covering projections on metric spaces
dc.contributor.author | Gutú, Olivia | |
dc.contributor.author | Jaramillo Aguado, Jesús Ángel | |
dc.date.accessioned | 2023-06-20T09:39:22Z | |
dc.date.available | 2023-06-20T09:39:22Z | |
dc.date.issued | 2007-05 | |
dc.description.abstract | For a large class of metric spaces with nice local structure, which includes Banach-Finsler manifolds and geodesic spaces of curvature bounded above, we give sufficient conditions for a local homeomorphism to be a covering projection. We first obtain a general condition in terms of a path continuation property. As a consequence, we deduce several conditions in terms of path- liftings involving a generalized derivative, and in particular we obtain an extension of Hadamard global inversion theorem in this context. Next we prove that, in the case of quasi-isometric mappings, some of these sufficient conditions are also necessary. Finally, we give an application to the existence of global implicit functions. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Promep (México) | |
dc.description.sponsorship | D.G.E.S. (Spain) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16611 | |
dc.identifier.doi | hppt://dx.doi.org/10.1007/s00208-006-0068-9 | |
dc.identifier.issn | 0025-5831 | |
dc.identifier.officialurl | http://www.springerlink.com/content/t2220x2731532124/fulltext.pdf | |
dc.identifier.relatedurl | http://www.springerlink.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50124 | |
dc.issue.number | 1 | |
dc.journal.title | Mathematische Annalen | |
dc.language.iso | eng | |
dc.page.final | 95 | |
dc.page.initial | 75 | |
dc.publisher | Springer | |
dc.relation.projectID | Grant 103.5/03/2568 | |
dc.relation.projectID | Grant BFM2003-06420. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.16 | |
dc.subject.keyword | Implicit Function Theorems | |
dc.subject.keyword | Manifolds | |
dc.subject.keyword | Mappings | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Global homeomorphisms and covering projections on metric spaces | |
dc.type | journal article | |
dc.volume.number | 338 | |
dcterms.references | Ambrose, W. Parallel translation of Riemannian curvature. Ann. of Math. 64, 337–363 (1956). Banach S. and Mazur S. ¨Uber mehrdeutige stetige abbildungen. Studia Math. 5, 174–178 (1934). Blot J. On global implicit functions. Nonlinear Anal. Theor., Meth. & App. 17 No. 10, 947–959 (1991). Bridson M.R and Haefliger A. Metric spaces of non-positive curvature. Springer Verlag(1964). Browder F.E. Covering spaces, fiber spaces and local homeomorphism. Duke Math. J. 21,329–336, (1954). Cacciopoli, R. Un principio di inversione per le corrispondenze funzionali e sue applicacioni alle equazioni alle deivate parziali. Atti Accad. Naz. Lincei 16, 392–400, (1932). De Cecco, G. and Palmieri, G. LIP manifolds: from metric to Finslerian structure. Math.Z. 218, 223–237, (1995). Gutú, O. and Jaramillo, J. A. Fibrations on Banach manifolds. Pac. J. Math. 215, 313–329 (2004). Hadamard, J. Sur les transformations ponctuelles. Bull. Soc. Math. France 34, 71–84 (1906). Ichiraku S. A note on global implicit function theorems. IEEE Trans. Circ. Syst. 32 No. 5,503–505 (1985). Ioffe A.D. Global surjection and global inverse mapping theorems in Banach spaces. Ann.New York Acad. Sci. 491, 181–188 (1987). John F. On quasi-isometric maps I. Comm. Pure Appl. Math. 21, 77–110 (1968). Katriel G. Mountain-pass theorems and global homeomorphism theorems. Ann. Inst. Henri Poincaré, Analyse Non Linéaire 11 No. 2, 189–209 (1994). Lang S. Fundaments of Differential Geometry. Graduate Text in Mathematics, 191. Springer Lévy, P. Sur les fonctions des lignes implicites. Bull. Soc. Math. France 48, 13–27 (1920). [16] Luukkainen, J. and Väisälä, J. Elements of Lipschitz Topology. Ann. Acad. Sci. Fenn. 3,85–122, (1977). Nollet S. and Xavier F. Global inversion via the Palais–Smale condition. Disc. and Cont. Dynam. Syst. 8 No.1, 17–28, (2002). Palais R.S. Natural operations on differential forms. Trans. Amer. Math. Soc. 92, 125–141,(1959). Palais R.S. Homotopy Theory of infinite-dimensional manifolds. Topology 5, 1–16, (1966). Palais R.S. Lusternik-Schnirelman Theory on Banach manifolds. Topology 5, 115–132,(1966). parthasarathy, T. On global univalence theorems. Lecture Notes in Math. 977. Springer-Verlag, (1983). Plastock R. Homeomorphisms between Banach spaces. Trans. Amer. Math. Soc. 200, 169–183 (1974). Pourciau B. Hadamard’s Theorem for locally Lipschitzian maps. J. Math. Anal. Appl. 85, 279–285 (1982). [24Pourciau B. Global Invertibility of Nonsmooth Mappings. J. Math. Anal. Appl. 131, 170–179(1988). Rabier P. Ehresmann fibrations and Palais–Smale conditions for morphism of Finsler Manifolds.Ann. of Math. 146, 547–691 (1997). Radulescu M. and Radulescu S. Global inversion theorems and applications to differential equations. Nonlinear Anal., Theor., Meth. & Appl. 4 No. 4, 951–963, (1980). RheinboldtW. Local mapping relations and global implicit functions theorems. Trans. Amer.Math. Soc. 138, 183–198 (1969). Schwartz J. T. Nonlinear Functional Analysis. Gordon and Breach, (1969). Spanier E.H. Algebraic Topology. McGraw Hill, (1966). Wolf, J. A. and Griffiths, P. A. Complete maps and differentiable coverings. Michigan Math. J. 10, 253–255 (1963). Zampieri G. Diffeomorphism with Banach spaces domains. Nonlinear Anal., Theor., Meth.& Appl. 19 No. 10, 923–932 (1992). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8b6e753b-df15-44ff-8042-74de90b4e3e9 | |
relation.isAuthorOfPublication.latestForDiscovery | 8b6e753b-df15-44ff-8042-74de90b4e3e9 |