Nonlinear nonlocal reaction-diffusion problem with local reaction

dc.contributor.authorRodríguez Bernal, Aníbal
dc.contributor.authorSastre Gómez, Silvia
dc.date.accessioned2023-11-17T11:43:52Z
dc.date.available2023-11-17T11:43:52Z
dc.date.issued2022-04-22
dc.description.abstractIn this paper we analyse the asymptotic behaviour of some non- local diffusion problems with local reaction term in general metric measure spaces. We find certain classes of nonlinear terms, including logistic type terms, for which solutions are globally defined with initial data in Lebesgue spaces. We prove solutions satisfy maximum and comparison principles and give sign conditions to ensure global asymptotic bounds for large times. We also prove that these problems possess extremal ordered equilibria and solutions, asymp- totically, enter in between these equilibria. Finally we give conditions for a unique positive stationary solution that is globally asymptotically stable for nonnegative initial data. A detailed analysis is performed for logistic type nonlinearities. As the model we consider here lack of smoothing effect, impor- tant focus is payed along the whole paper on differences in the results with respect to problems with local diffusion, like the Laplacian operator.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipJunta de Andalucía (España)
dc.description.statuspub
dc.identifier.citationRodríguez-Bernal, A., & Sastre-Gómez, S. (2021). Nonlinear nonlocal reaction-diffusion problem with local reaction. Discrete And Continuous Dynamical Systems, 42(4), 1731. https://doi.org/10.3934/dcds.2021170
dc.identifier.doi10.3934/dcds.2021170
dc.identifier.officialurlhttps//doi.org/10.3934/dcds.2021170
dc.identifier.relatedurlhttps://www.aimsciences.org/article/doi/10.3934/dcds.2021170
dc.identifier.urihttps://hdl.handle.net/20.500.14352/88785
dc.journal.titleDiscrete and Continuous Dynamical Systems
dc.language.isoeng
dc.page.final1765
dc.page.initial1731
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.projectIDMTM2016-75465
dc.relation.projectIDPID2019- 103860GB-I00
dc.relation.projectIDUCM GR58/08, Grupo 920894
dc.relation.projectIDMTM2017-83391
dc.relation.projectIDJunta de Andalucía FQM-131
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordNonlocal diffusion
dc.subject.keywordLocal reaction
dc.subject.keywordMaximum principles
dc.subject.keywordAsymptotic bounds
dc.subject.keywordExtremal solutions
dc.subject.keywordLogistic models
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco12 Matemáticas
dc.subject.unesco1202.19 Ecuaciones Diferenciales Ordinarias
dc.titleNonlinear nonlocal reaction-diffusion problem with local reactionen
dc.typejournal article
dc.type.hasVersionCVoR
dc.volume.number42
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rodriguez_bernal_nonlinear.pdf
Size:
577.89 KB
Format:
Adobe Portable Document Format

Collections