Maximal gap between local and global distinguishability of bipartite quantum states

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We prove a tight and close-to-optimal lower bound on the effectiveness of local quantum measurements (without classical communication) at discriminating any two bipartite quantum states. Our result implies, for example, that any two orthogonal quantum states of a nA×nB bipartite quantum system can be discriminated via local measurements with an error probability no larger than 1/2 (1 − 1/ cmin{nA,nB}, where 1 ≤ c ≤ 2√2 is a universal constant, and our bound scales provably optimally with the local dimensions nA, nB. Mathematically, this is achieved by showing that the distinguishability norm ||·||LO associated with local measurements satisfies that ||·||≤ 2√2min{nA, nB} ||·|LO, where ||·||1 is the trace norm.
Unesco subjects
[1] D. Aharonov, A. Kitaev, and N. Nisan, Quantum circuits with mixed states, in Proc. Thirtieth Annual ACM Symp. Theory Comput. (STOC ’98), 20–30 (1998). [2] G. Aubrun, L. Lami, C. Palazuelos, S. J. Szarek, A. Winter, Universal gaps for XOR games from estimates on tensor norm ratios, Commun. Math. Phys. 375, 679–724 (2020). [3] G. Aubrun and C. Lancien, Locally restricted measurements on a multipartite quantum system: data hiding is generic, Quantum Inf. Comput. 15(5-6), 513–540 (2015). [4] D. Blecher, Tracially completely bounded multilinear maps on C*-algebras, J. London Math. Soc. 39 (3), 514–524 (1989). [5] F. G. S. L. Brand˜ao, M. Piani, and P. Horodecki, Generic emergence of classical features in quantum Darwinism, Nat. Commun. 6, 7908 (2015). [6] E. Colafranceschi, L. Lami, G. Adesso, and T. Tufarelli, Refined diamond norm bounds on the emergence of objectivity of observables, J. Phys. A 53, 395305 (2020). [7] D. P. DiVincenzo, D. W. Leung, and B. M. Terhal, Quantum data hiding, IEEE Trans. Inf. Theory 48(3), 580–599 (2002). [8] U. Haagerup, The Grothendieck inequality for bilinear forms on C*-algebras, Adv. Math. 56(2), 93–116 (1985). [9] P. A. Knott, T. Tufarelli, M. Piani, and G. Adesso, Generic emergence of objectivity of observables in infinite dimensions, Phys. Rev. Lett. 121, 160401 (2018). [10] L. Lami, C. Palazuelos, A. Winter, Ultimate data hiding in quantum mechanics and beyond, Commun. Math. Phys. 361(2), 661–708 (2018). [11] W. Matthews, S. Wehner, and A. Winter, Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding, Comm. Math. Phys. 291(3), 813–843 (2009). [12] G. Pisier, Grothendieck’s theorem for noncommutative C*-algebras, with an appendix on Grothendieck’s constants, J. Funct. Anal. 29(3), 397–415 (1978). [13] X.-L. Qi and D. Ranard, Emergent classicality in general multipartite states and channels, Quantum 5, 555 (2021). [14] O. Regev, T. Vidick, Quantum XOR games. ACM Trans. Comput. Theory (TOCT) 7(4), 1–43 (2015). [15] M. F. Sacchi, Optimal discrimination of quantum operations, Phys. Rev. A 71(6), 062340 (2005). [16] B. M. Terhal, D. P. DiVincenzo, and D. W. Leung, Hiding bits in Bell states, Phys. Rev. Lett. 86, 5807 (2001). [17] W. H. Zurek, Quantum Darwinism, Nat. Phys. 5, 181–188 (2009).