Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Euclidean Distance Between Haar Orthogonal and Gaussian Matrices

dc.contributor.authorGonzález Guillén, Carlos Eduardo
dc.contributor.authorPalazuelos Cabezón, Carlos
dc.contributor.authorVillanueva Díez, Ignacio
dc.date.accessioned2023-06-18T06:58:03Z
dc.date.available2023-06-18T06:58:03Z
dc.date.issued2016
dc.description.abstractIn this work, we study a version of the general question of how well a Haar-distributed orthogonal matrix can be approximated by a random Gaussian matrix. Here, we consider a Gaussian random matrix (Formula presented.) of order n and apply to it the Gram–Schmidt orthonormalization procedure by columns to obtain a Haar-distributed orthogonal matrix (Formula presented.). If (Formula presented.) denotes the vector formed by the first m-coordinates of the ith row of (Formula presented.) and (Formula presented.), our main result shows that the Euclidean norm of (Formula presented.) converges exponentially fast to (Formula presented.), up to negligible terms. To show the extent of this result, we use it to study the convergence of the supremum norm (Formula presented.) and we find a coupling that improves by a factor (Formula presented.) the recently proved best known upper bound on (Formula presented.). Our main result also has applications in Quantum Information Theory.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorship“Ramón y Cajal”
dc.description.sponsorshipEuropean CHIST-ERA project CQC
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39895
dc.identifier.doi10.1007/s10959-016-0712-6
dc.identifier.issn0894984
dc.identifier.officialurlhttps//doi.org/10.1007/s10959-016-0712-6
dc.identifier.relatedurlhttp://link.springer.com/article/10.1007/s10959-016-0712-6
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24689
dc.journal.titleJournal of Theoretical Probability
dc.language.isoeng
dc.page.final26
dc.page.initial1
dc.publisherSpringer New York LLC
dc.relation.projectIDMTM2011-26912 and
dc.relation.projectIDMTM2014- 54240-P
dc.relation.projectIDQUITEMAD+-CM ( S2013/ICE-2801)
dc.relation.projectIDICMAT Severo Ochoa project SEV-2015-0554
dc.relation.projectIDSEV-2015-0554
dc.relation.projectIDPRI-PIMCHI-2011-1071
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordRandom matrix theory
dc.subject.keywordGaussian measure
dc.subject.keywordHaar measure
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleEuclidean Distance Between Haar Orthogonal and Gaussian Matricesen
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication09970d9e-6722-4f02-aac0-023cf9867638
relation.isAuthorOfPublication45785a65-66ff-415c-a422-bfdc6e3ff149
relation.isAuthorOfPublication.latestForDiscovery09970d9e-6722-4f02-aac0-023cf9867638

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Villanueva25libre.pdf
Size:
300.4 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Villanueva25.pdf
Size:
594.05 KB
Format:
Adobe Portable Document Format

Collections