Extraction of critical points of smooth functions on Banach spaces

dc.contributor.authorGarcía Bravo, Miguel
dc.date.accessioned2025-02-07T16:11:12Z
dc.date.available2025-02-07T16:11:12Z
dc.date.issued2020
dc.description.abstractLet E be an infinite-dimensional separable Hilbert space. We show that for every C1 function f : E → Rd, every open set U with Cf := {x ∈ E : Df(x) is not surjective} ⊂ U and every continuous function ε : E → (0, ∞) there exists a C1 mapping ϕ : E → Rd such that ||f(x) −ϕ(x)|| ≤ ε(x)for every x ∈ E, f =ϕoutside U and ϕhas no critical points (Cϕ = ∅). This result can be generalized to the case where E = c0 or E = lp, 1 <p < ∞. In the case E = c0 it is also possible to get that ||Df(x) −Dϕ(x)|| ≤ ε(x)for every x ∈ E.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyInstituto de Ciencias Matemáticas (ICMAT)
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad
dc.description.statuspub
dc.identifier.doi10.1016/j.jmaa.2019.123535
dc.identifier.officialurlhttps://doi.org/10.1016/j.jmaa.2019.123535
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117924
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.initial123535 (21)
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MTM2015-65825-P/ES/ANALISIS FUNCIONAL NO LINEAL Y GEOMETRICO/
dc.rights.accessRightsrestricted access
dc.subject.keywordBanach space
dc.subject.keywordMorse-Sard theorem
dc.subject.keywordApproximation
dc.subject.keywordCritical point
dc.subject.keywordDiffeomorphic extraction
dc.subject.ucmCiencias
dc.subject.unesco12 Matemáticas
dc.titleExtraction of critical points of smooth functions on Banach spaces
dc.typejournal article
dc.volume.number482
dspace.entity.typePublication
relation.isAuthorOfPublicationcfa32fef-8467-4320-9632-85e4db107086
relation.isAuthorOfPublication.latestForDiscoverycfa32fef-8467-4320-9632-85e4db107086

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0022247X19308030-main.pdf
Size:
484.46 KB
Format:
Adobe Portable Document Format

Collections