Lifting surgeries to branched covering spaces
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.author | Hilden, Hugh Michael | |
dc.date.accessioned | 2023-06-21T02:02:52Z | |
dc.date.available | 2023-06-21T02:02:52Z | |
dc.date.issued | 1980 | |
dc.description.abstract | Long ago J. W. Alexander showed that any closed, orientable, triangulated n-manifold can be expressed as a branched covering of the n-sphere [Bull. Amer. Math. Soc. 26 (1919/20), 370–372; Jbuch 47, 529]. In general, the branch set is not a manifold and no useful information is given about the degree of the branched covering. When n=3, however, he did indicate that the branch set could be arranged to be a link. Much more recently, the first author [Amer. J. Math. 98 (1976), no. 4, 989–997], U. Hirsch [Math. Z. 140 (1974), 203–230] and the second author [Quart. J. Math. Ser. (2) 27 (1976), no. 105, 85–94] showed that when n=3 the branched covering can be constructed to have degree 3 and a knot as branch set. Of course, these branched coverings are highly irregular. The authors here address similar questions in higher dimensions. Starting with a branched covering Mn→Sn, the authors give some technical, sufficient conditions for a manifold obtained from Mn by a single surgery to be a branched covering of Sn of the same degree and with a branch set easily described in terms of the initial branch set. The nicest corollary of the general technique is that if Mn→Sn is a branched covering of degree d, then there is a branched covering Mn×Sk→Sn+k of degree d+1. The new branch set is an orientable and/or locally flat submanifold if and only if the original branch set is. In particular, the n-torus is an n-fold branched covering of the n-sphere, branched along a locally flat, orientable submanifold. (For known cohomological reasons, n is the smallest possible degree of such a branched covering.) | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17224 | |
dc.identifier.doi | 10.2307/199815 | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.officialurl | http://www.ams.org/journals/tran/1980-259-01/S0002-9947-1980-0561830-0/S0002-9947-1980-0561830-0.pdf | |
dc.identifier.relatedurl | http://www.ams.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64706 | |
dc.issue.number | 1 | |
dc.journal.title | Transactions of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 161 | |
dc.page.initial | 157 | |
dc.publisher | American Mathematical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.162.8 | |
dc.subject.keyword | equivariant surgery of branched coverings over the n-sphere | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Lifting surgeries to branched covering spaces | |
dc.type | journal article | |
dc.volume.number | 259 | |
dcterms.references | A. Edmonds, Extending a branched covering over a handle (preprint). cf. I. Berstein and A. Edmonds, On the construction of branched coverings of low-dimensional manifolds, Trans. Amer. Math. Soc. 247 (1979), 87-124. I. Berstein and A. Edmonds, The degree and branch set of a branched covering, Invent. Math. (to appear). J. Montesinos, Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo, Thesis, Universidad Complutense, Madrid, Spain, 1971. J. Montesinos, Three-manifolds as 3-fold branched covers of S3, Quart. J. Math. Oxford Ser. (2) 27 (1976), 85-94. J. Montesinos, 4-manifolds, 3-fold branched covering spaces and ribbons, Trans. Amer. Math. Soc. 245 (1978), 453-467. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1