Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lifting surgeries to branched covering spaces

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorHilden, Hugh Michael
dc.date.accessioned2023-06-21T02:02:52Z
dc.date.available2023-06-21T02:02:52Z
dc.date.issued1980
dc.description.abstractLong ago J. W. Alexander showed that any closed, orientable, triangulated n-manifold can be expressed as a branched covering of the n-sphere [Bull. Amer. Math. Soc. 26 (1919/20), 370–372; Jbuch 47, 529]. In general, the branch set is not a manifold and no useful information is given about the degree of the branched covering. When n=3, however, he did indicate that the branch set could be arranged to be a link. Much more recently, the first author [Amer. J. Math. 98 (1976), no. 4, 989–997], U. Hirsch [Math. Z. 140 (1974), 203–230] and the second author [Quart. J. Math. Ser. (2) 27 (1976), no. 105, 85–94] showed that when n=3 the branched covering can be constructed to have degree 3 and a knot as branch set. Of course, these branched coverings are highly irregular. The authors here address similar questions in higher dimensions. Starting with a branched covering Mn→Sn, the authors give some technical, sufficient conditions for a manifold obtained from Mn by a single surgery to be a branched covering of Sn of the same degree and with a branch set easily described in terms of the initial branch set. The nicest corollary of the general technique is that if Mn→Sn is a branched covering of degree d, then there is a branched covering Mn×Sk→Sn+k of degree d+1. The new branch set is an orientable and/or locally flat submanifold if and only if the original branch set is. In particular, the n-torus is an n-fold branched covering of the n-sphere, branched along a locally flat, orientable submanifold. (For known cohomological reasons, n is the smallest possible degree of such a branched covering.)
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17224
dc.identifier.doi10.2307/199815
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/1980-259-01/S0002-9947-1980-0561830-0/S0002-9947-1980-0561830-0.pdf
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64706
dc.issue.number1
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final161
dc.page.initial157
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.8
dc.subject.keywordequivariant surgery of branched coverings over the n-sphere
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleLifting surgeries to branched covering spaces
dc.typejournal article
dc.volume.number259
dcterms.referencesA. Edmonds, Extending a branched covering over a handle (preprint). cf. I. Berstein and A. Edmonds, On the construction of branched coverings of low-dimensional manifolds, Trans. Amer. Math. Soc. 247 (1979), 87-124. I. Berstein and A. Edmonds, The degree and branch set of a branched covering, Invent. Math. (to appear). J. Montesinos, Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo, Thesis, Universidad Complutense, Madrid, Spain, 1971. J. Montesinos, Three-manifolds as 3-fold branched covers of S3, Quart. J. Math. Oxford Ser. (2) 27 (1976), 85-94. J. Montesinos, 4-manifolds, 3-fold branched covering spaces and ribbons, Trans. Amer. Math. Soc. 245 (1978), 453-467.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos20.pdf
Size:
934.57 KB
Format:
Adobe Portable Document Format

Collections