Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Bloch-like oscillations in the Peyrard-Bishop-Holstein model

dc.contributor.authorDíaz García, Elena
dc.contributor.authorLima, R. P. A.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-20T10:47:42Z
dc.date.available2023-06-20T10:47:42Z
dc.date.issued2008-10
dc.description© 2008 The American Physical Society. The authors thank E. Maciá and A. V. Malyshev for helpful conversations. This work was supported by MEC Project MOSAICO and BSCH-UCM Project No. PR34/07-15916. R.P.A.L. acknowledges support by MEC through the Juan de la Cierva program.
dc.description.abstractThe Peyrard-Bishop-Holstein model has been previously introduced as an appropriate framework for the description of polaronic effects for charge migration in DNA. We study numerically the Peyrard-Bishop-Holstein model when the charge carrier is also subjected to an applied uniform electric field. We find that the polaron undergoes coherent oscillations when the electric field is applied along the stacking direction. The frequency of the oscillations is the same as in the rigid lattice (Bloch frequency) provided that the carrier-lattice coupling is not large. Increasing the coupling the single peak of the Fourier spectrum splits into side peaks around the Bloch frequency.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipBSCH-UCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27316
dc.identifier.doi10.1103/PhysRevB.78.134303
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.78.134303
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51235
dc.issue.number13
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDPR34/07-15916
dc.relation.projectIDMOSAICO
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordWannier-Stark Ladders
dc.subject.keywordSingle Dna-Molecules
dc.subject.keywordElectrical-Transport
dc.subject.keywordSemiconductor Superlattices
dc.subject.keywordConductivity
dc.subject.ucmFísica de materiales
dc.titleBloch-like oscillations in the Peyrard-Bishop-Holstein model
dc.typejournal article
dc.volume.number78
dcterms.references1. D. Porath, N. Lapidot, and J. Gómez-Herrero, Introducing Molecular Electronics, edited by G. Cuniberti, G. Fagas, and K. Richter (Springer, Berlin, 2005). 2. G. Cuniberti, E. Maciá, A. Rodríguez, and R. A. Röemer, Charge Migration in DNA, edited by T. Chakraborty (Springer, Berlin, 2007). 3. A. Yu. Kasumov, M. Kociak, S. Guéron, B. Reulet, V. T. Volkov, D. V. Klinov, and H. Bouchiat, Science 291, 280 (2001). 4. Y. Okahata, T. Kobayashi, K. Tanaka, and M. J. Shimomura, J. Am. Chem. Soc. 120, 6165 (1998). 5. H. W. Fink and C. Schönenberger, Nature London 398, 407 (1999). 6. A. Rakitin, P. Aich, C. Papadopoulos, Yu. Kobzar, A. S. Vedeneev, J. S. Lee, and J. M. Xu, Phys. Rev. Lett. 86, 3670 (2001). 7. O. Legrand, D. Côte, and U. Bockelmann, Phys. Rev. E 73, 031925 (2006). 8. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature London 403, 635 (2000). 9. K.-H. Yoo, D. H. Ha, J.-O. Lee, J. W. Park, J. Kim, J. J. Kim, H.-Y. Lee, T. Kawai, and H. Y. Choi, Phys. Rev. Lett. 87, 198102 (2001). 10. J. S. Hwang, K. J. Kong, D. Ahn, G. S. Lee, D. J. Ahn, and S. W. Hwang, Appl. Phys. Lett. 81, 1134 (2002). 11. B. Q. Xu, P. M. Zhang, X. L. Li, and N. J. Tao, Nano Lett. 4, 1105 (2004). 12. H. Cohen, C. Nogues, R. Naaman, and D. Porath, Proc. Natl. Acad. Sci. U.S.A. 102, 11589 (2005). 13. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature London 391, 775 (1998). 14. A. J. Storm, J. van Noort, S. de Vries, and C. Dekker, Appl. Phys. Lett. 79, 3881 (2001). 15. E. Maciá, Phys. Rev. B 76, 245123 (2007). 16. D. H. Dunlap and V. M. Kenkre, Phys. Lett. A 127, 438 (1988). 17. F. Bloch, Z. Phys. 52, 555 (1928). 18. C. Zener, Proc. R. Soc. London, Ser. A 145, 523 (1934). 19. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970). 20. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, New York, 1976), p. 213. 21. J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, Phys. Rev. B 46, R7252 (1992). 22. K. Leo, P. Haring Bolivar, F. Brüggemann, R. Schwedler, and K. Köhler, Solid State Commun. 84, 943 (1992). 23. K. Leo, Semicond. Sci. Technol. 13, 249 (1998). 24. M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Phys. Rev. Lett. 76, 4508 (1996). 25.3 S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G. Raizen, Phys. Rev. Lett. 76, 4512 (1996). 26. B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998). 27. G. von Plessen, T. Meier, J. Feldmann, E. O. Gobel, P. Thomas, K. W. Goossen, J. M. Kuo, and R. F. Kopf, Phys. Rev. B 49, 14058 (1994). 28. V. D. Lakhno and N. S. Fialko, Pis’ma Zh. Eksp. Teor. Fiz. 79, 575 (2004). 29. M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755 (1989). 30. S. Komineas, G. Kalosakas, and A. R. Bishop, Phys. Rev. E 65, 061905 (2002). 31. P. Maniadis, G. Kalosakas, K. Ø. Rasmussen, and A. R. Bishop, Phys. Rev. E 72, 021912 (2005). 32. J. A. Berashevich, A. D. Bookatz, and T. Chakraborty, J. Phys.: Condens. Matter 20, 035207 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublicationd03da7bf-8066-4f33-93e2-ac077fd4fcb8
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryd03da7bf-8066-4f33-93e2-ac077fd4fcb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame34libre.pdf
Size:
394.82 KB
Format:
Adobe Portable Document Format

Collections