Bloch-like oscillations in the Peyrard-Bishop-Holstein model
dc.contributor.author | Díaz García, Elena | |
dc.contributor.author | Lima, R. P. A. | |
dc.contributor.author | Domínguez-Adame Acosta, Francisco | |
dc.date.accessioned | 2023-06-20T10:47:42Z | |
dc.date.available | 2023-06-20T10:47:42Z | |
dc.date.issued | 2008-10 | |
dc.description | © 2008 The American Physical Society. The authors thank E. Maciá and A. V. Malyshev for helpful conversations. This work was supported by MEC Project MOSAICO and BSCH-UCM Project No. PR34/07-15916. R.P.A.L. acknowledges support by MEC through the Juan de la Cierva program. | |
dc.description.abstract | The Peyrard-Bishop-Holstein model has been previously introduced as an appropriate framework for the description of polaronic effects for charge migration in DNA. We study numerically the Peyrard-Bishop-Holstein model when the charge carrier is also subjected to an applied uniform electric field. We find that the polaron undergoes coherent oscillations when the electric field is applied along the stacking direction. The frequency of the oscillations is the same as in the rigid lattice (Bloch frequency) provided that the carrier-lattice coupling is not large. Increasing the coupling the single peak of the Fourier spectrum splits into side peaks around the Bloch frequency. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MEC | |
dc.description.sponsorship | BSCH-UCM | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27316 | |
dc.identifier.doi | 10.1103/PhysRevB.78.134303 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevB.78.134303 | |
dc.identifier.relatedurl | http://journals.aps.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51235 | |
dc.issue.number | 13 | |
dc.journal.title | Physical Review B | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | PR34/07-15916 | |
dc.relation.projectID | MOSAICO | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Wannier-Stark Ladders | |
dc.subject.keyword | Single Dna-Molecules | |
dc.subject.keyword | Electrical-Transport | |
dc.subject.keyword | Semiconductor Superlattices | |
dc.subject.keyword | Conductivity | |
dc.subject.ucm | Física de materiales | |
dc.title | Bloch-like oscillations in the Peyrard-Bishop-Holstein model | |
dc.type | journal article | |
dc.volume.number | 78 | |
dcterms.references | 1. D. Porath, N. Lapidot, and J. Gómez-Herrero, Introducing Molecular Electronics, edited by G. Cuniberti, G. Fagas, and K. Richter (Springer, Berlin, 2005). 2. G. Cuniberti, E. Maciá, A. Rodríguez, and R. A. Röemer, Charge Migration in DNA, edited by T. Chakraborty (Springer, Berlin, 2007). 3. A. Yu. Kasumov, M. Kociak, S. Guéron, B. Reulet, V. T. Volkov, D. V. Klinov, and H. Bouchiat, Science 291, 280 (2001). 4. Y. Okahata, T. Kobayashi, K. Tanaka, and M. J. Shimomura, J. Am. Chem. Soc. 120, 6165 (1998). 5. H. W. Fink and C. Schönenberger, Nature London 398, 407 (1999). 6. A. Rakitin, P. Aich, C. Papadopoulos, Yu. Kobzar, A. S. Vedeneev, J. S. Lee, and J. M. Xu, Phys. Rev. Lett. 86, 3670 (2001). 7. O. Legrand, D. Côte, and U. Bockelmann, Phys. Rev. E 73, 031925 (2006). 8. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature London 403, 635 (2000). 9. K.-H. Yoo, D. H. Ha, J.-O. Lee, J. W. Park, J. Kim, J. J. Kim, H.-Y. Lee, T. Kawai, and H. Y. Choi, Phys. Rev. Lett. 87, 198102 (2001). 10. J. S. Hwang, K. J. Kong, D. Ahn, G. S. Lee, D. J. Ahn, and S. W. Hwang, Appl. Phys. Lett. 81, 1134 (2002). 11. B. Q. Xu, P. M. Zhang, X. L. Li, and N. J. Tao, Nano Lett. 4, 1105 (2004). 12. H. Cohen, C. Nogues, R. Naaman, and D. Porath, Proc. Natl. Acad. Sci. U.S.A. 102, 11589 (2005). 13. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature London 391, 775 (1998). 14. A. J. Storm, J. van Noort, S. de Vries, and C. Dekker, Appl. Phys. Lett. 79, 3881 (2001). 15. E. Maciá, Phys. Rev. B 76, 245123 (2007). 16. D. H. Dunlap and V. M. Kenkre, Phys. Lett. A 127, 438 (1988). 17. F. Bloch, Z. Phys. 52, 555 (1928). 18. C. Zener, Proc. R. Soc. London, Ser. A 145, 523 (1934). 19. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970). 20. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, New York, 1976), p. 213. 21. J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, Phys. Rev. B 46, R7252 (1992). 22. K. Leo, P. Haring Bolivar, F. Brüggemann, R. Schwedler, and K. Köhler, Solid State Commun. 84, 943 (1992). 23. K. Leo, Semicond. Sci. Technol. 13, 249 (1998). 24. M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Phys. Rev. Lett. 76, 4508 (1996). 25.3 S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G. Raizen, Phys. Rev. Lett. 76, 4512 (1996). 26. B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998). 27. G. von Plessen, T. Meier, J. Feldmann, E. O. Gobel, P. Thomas, K. W. Goossen, J. M. Kuo, and R. F. Kopf, Phys. Rev. B 49, 14058 (1994). 28. V. D. Lakhno and N. S. Fialko, Pis’ma Zh. Eksp. Teor. Fiz. 79, 575 (2004). 29. M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755 (1989). 30. S. Komineas, G. Kalosakas, and A. R. Bishop, Phys. Rev. E 65, 061905 (2002). 31. P. Maniadis, G. Kalosakas, K. Ø. Rasmussen, and A. R. Bishop, Phys. Rev. E 72, 021912 (2005). 32. J. A. Berashevich, A. D. Bookatz, and T. Chakraborty, J. Phys.: Condens. Matter 20, 035207 (2008). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d03da7bf-8066-4f33-93e2-ac077fd4fcb8 | |
relation.isAuthorOfPublication | dbc02e39-958d-4885-acfb-131220e221ba | |
relation.isAuthorOfPublication.latestForDiscovery | d03da7bf-8066-4f33-93e2-ac077fd4fcb8 |
Download
Original bundle
1 - 1 of 1