A novel multi-parameter family of quantum systems with partially broken N-fold supersymmetry
dc.contributor.author | González López, Artemio | |
dc.contributor.author | Tanaka, Toshiaki | |
dc.date.accessioned | 2023-06-20T10:58:51Z | |
dc.date.available | 2023-06-20T10:58:51Z | |
dc.date.issued | 2005-06-10 | |
dc.description | ©IOP Publishing. This work was partially supported by Spain’s DGI under grant no. BFM2002–02646 (AG-L), as well as by a Spanish Ministry of Education, Culture and Sports research fellowship (TT). | |
dc.description.abstract | We develop a systematic algorithm for constructing an X-fold supersymmetric system from a given vector space invariant under one of the supercharges. Applying this algorithm to spaces of monomials, we construct a new multiparameter family of Ar-fold supersymmetric models, which shall be referred to as 'type C'. We investigate various aspects of these type C models in detail. It turns out that in certain cases these systems exhibit a novel phenomenon, namely, partial breaking of M-fold supersymmetry. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGI, Spain | |
dc.description.sponsorship | Spanish Ministry of Education Culture and Sports | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/32850 | |
dc.identifier.doi | 10.1088/0305-4470/38/23/005 | |
dc.identifier.issn | 0305-4470 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0305-4470/38/23/005 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.relatedurl | http://arxiv.org/abs/hep-th/0405079 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51548 | |
dc.issue.number | 23 | |
dc.journal.title | Journal of physics A: Mathematical and general | |
dc.language.iso | eng | |
dc.page.final | 5157 | |
dc.page.initial | 5133 | |
dc.publisher | IOP Publishing | |
dc.relation.projectID | BFM2002–02646 (AG.-L) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Orthogonal polynomials | |
dc.subject.keyword | Mechanics | |
dc.subject.keyword | Potentials | |
dc.subject.keyword | Operators | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | A novel multi-parameter family of quantum systems with partially broken N-fold supersymmetry | |
dc.type | journal article | |
dc.volume.number | 38 | |
dcterms.references | [1] Aoyama H, Sato M and Tanaka T 2001 N - fold supersymmetry in quantum mechanics: general formalism Nucl. Phys. B 619 105–127 (quant-ph/0106037) [2] Andrianov A and Sokolov A 2003 Nonlinear supersymmetry in quantum mechanics: algebraic properties and differential representations Nucl. Phys. B 660 25–50 (hep- th/0301062) [3] Darboux G 1882 Sur une proposition relative aux équations linéaires Comptes Rendus Acad. Sci. 94 1456–1459 [4] Matveev V and Salle M 1991 Darboux Transformations and Solitons (Berlin: Springer Verlag) [5] Andrianov A, Ioffe M and Spiridonov V 1993 Higher-derivative supersymmetry and the Witten index Phys. Lett. A 174 273–279 (hep- th/9303005) [6] Turbiner A and Ushveridze A 1987 Spectral singularities and quasi-exactly solvable quantal problem Phys. Lett. A 126 181–183 [7] Ushveridze A 1994 Quasi-exactly Solvable Models in Quantum Mechanics (Bristol: IOP Publishing) [8] Rubakov V and Spiridonov V 1988 Parasupersymmetric quantum mechanics Mod. Phys. Lett. A 3 1337–1347 [9] Beckers J and Debergh N 1990 Parastatistics and supersymmetry in quantum mechanics Nucl. Phys. B 340 767–776 [10] Khare A 1993 Parasupersymmetry in quantum mechanics J. Math. Phys. 34 1277– 1294 [11] Durand S 1993 Fractional supersymmetry and quantum mechanics Phys. Lett. B 312 115– 120 (hep-th/9305128) [12] Tanaka T 2003 N -fold supersymmetry and quasi-solvability (preprint), to appear in Progress in Mathematical Physics Research (New York: Nova Science Publishers) [13] Aoyama H, Sato M and Tanaka T 2001 General forms of a N -fold supersymmetric family Phys. Lett. B 503 423–429 (quant- ph/0012065) [14] Tanaka T 2003 Type A N –fold supersymmetry and generalized Bender– Dunne polynomials Nucl. Phys. B 662 413–446 (hep-th/0212276). [15] González-López A and Tanaka T 2004 A new family of N -fold supersymmetry: type B Phys. Lett. B 586 117–124 (hep-th/0307094) [16] Post G and Turbiner A 1995 Classification of linear differential operators with invariant subspace in monomials Russ. J. Math. Phys. 3 113–122 (funct-an/9307001) [17] Tanaka T 2004 sl(M + 1) construction of quasi-solvable quantum M-body systems Ann. Phys. 309 239–280 (hep-th/0306174) [18] Shifman M 1989 New findings in quantum mechanics (partial algebraization of the spectral problem) Int. J. Mod. Phys. A 4 2897– 2952 [19] González-López A, Kamran N and Olver P J 1994 Quasi-exact solvability Contemp. Math. 160 113–140 [20] Crum M 1955 Associated Sturm–Liouville equations Quart. J. Math. Oxford 6 121–127 [21] Kreῐn M 1957 Dokl. Akad. Nauk SSSR 113 970 [22] González-López A, Kamran N and Olver P J 1993 Normalizability of one-dimensional quasiexactly solvable Schrödinger operators Commun. Math. Phys. 153 117–146 [23] Turbiner A 1994 Lie algebras, cohomologies, and new findings in quantum mechanics Contemp. Math. 160 263–310 [24] Turbiner A 1988 Quasi-exactly solvable problems and sl(2) algebra Commun. Math. Phys. 118 467–474 [25] Turbiner A 1992 Lie algebras and polynomials in one variable J. Phys. A: Math. Gen. 25 L1087–L1093 [26] Cooper F, Khare A and Sukhatme U 1995 Supersymmetry and quantum mechanics Phys. Rep. 251 267–385 (hep-th/9405029) [27] Gradshteyn I and Ryzhik I 2000 Table of Integrals, Series, and Products (San Diego: Academic Press) sixth edition [28] Dunne G and Feinberg J 1998 Self- isospectral potentials and supersymmetric quantum mechanics Phys. Rev. D 57 1271– 1276 (hep-th/9706012) [29] Bender C M and Dunne G V 1996 Quasi- exactly solvable systems and orthogonal polynomials J. Math. Phys. 37 6–11 (hep- th/95111389) [30] Finkel F, González-López A and Rodríguez M A 1996 Quasi-exactly solvable potentials on the line and orthogonal polynomials J. Math. Phys. 37 3954–3972 (hep-th/9603103) [31] Chihara T 1978 An Introduction to Orthogonal Polynomials (New York: Gordon and Breach) [32] Tsutsui I, Fülöp T and Cheon T 2003 Connection conditions and the spectral family under singular potentials J. Phys. A: Math. Gen. 36 275–287 (quant-ph/0209110) [33] Kikuchi H 2003 The fermion determinant, its modulus and phase Phys. Lett. B 562 299– 06 (hep-th/0210003) [34] Smilga A 2004 Weak supersymmetry Phys. Lett. B 585 173–179 (hep-th/0311023) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc | |
relation.isAuthorOfPublication.latestForDiscovery | 7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- gonzalezlopez20preprint.pdf
- Size:
- 366.94 KB
- Format:
- Adobe Portable Document Format