Membrane potentials and electrolyte permeation in a cation-exchange membrane

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science BV
Google Scholar
Research Projects
Organizational Units
Journal Issue
A method has been developed which permits one to determine the electrolyte permeation velocities and the membrane system permeability from measurements of the membrane potential as a function of time. The method has been applied to a cation-exchange membrane separating two aqueous KCl solutions, at the same pressure and temperature, but of different concentrations. The experiments have been carried out in two concentration ranges and at different solution stirring rates. The obtained results showed that the membrane system permeability depends notably on the stirring rate, this dependence being greater for the highest concentration range. The intrinsic permeability of the membrane was determined from considerations about the concentration polarization effect, its value being greater in the lower concentration range.
© 1999 Elsevier Science B.V.
UCM subjects
Unesco subjects
[1] A.J. Staverman, Non-equilibrium thermodynamics of membrane processes, Trans. Faraday Soc. 48 (1952) 176. [2] G. Scatchard, Ion exchanger electrodes, J. Am. Chem. Soc. 48 (1953) 176. [3] G.J. Hills, P.W.M. Jacobs, N. Laksminarayanaiah, Membrane potentials. I. The theory of the emf of cells containing ion-exchange membranes, Proc. Roy. Soc. A 262 (1961) 246. [4] M. Delmotte, J. Chanu, Realisation experimentale d'un gradient de concentration ionique maintenu constant, J. Electroquim. Acta 18 (1978) 963. [5] K. Nomura, A. Matsubara, H. Kinizuka, Diffusion and conductive membrane permeabilities to ions in liquid membrane ± aqueous inorganic electrolyte system, Bull. Chem. Soc. Jpn. 51 (1978) 1037. [6] J.A. Ibañez, A.F. Tejerina, J. Garrido, J. Pellicer, Diffusion salt flow through membranes and permeability determination from cell potential measurements, J. Non-equilibrium Thermodyn. 5 (1980) 313. [7] C.J.P. Hoogervorst, J.A.P. Van Dick, J.A.M. Smit, Nonstationary diffusion through membranes. 1. Transient diffusion through a membrane separating two unequal volumes of wellstirred solutions, J. Phys. Chem. 82 (1978) 1311. [8] C.J.P. Hoogervorst, J. De Gock, C.W. Versluijs, J.A.M. Smit, Nonstationary diffusion through membranes. 2. Transient diffusion through a membrane separating two semiinfinite volumes of unstirred solutions, J. Phys. Chem. 82 (1978) 1318. [9] C.J.P. Hoogervorst, J.A.M. Smit, A.J.J. Stavermann, Nonstationary diffusion of polystyrenes through a cellophanemembrane, J. Polym. Sci. 16 (1978) 287. [10] G. KraÈmer, A. Schmitt, R. Varoqui, Electrochemical membrane properties in relation to polarization at the interfaces during electrodialysis, J. Colloid Interface Sci. 66(3) (1978) 516. [11] C. Ruiz-Bauzá, C. Rueda Sánchez, V.M. Barragán García, Oncation and water transport numbers in cellulose acetate membranes, J. Non-equilib. Thermodyn. 15 (1990) 383. [12] V.M. Barragán, C. Ruiz-Bauzá, J.I. Mengual, On current dependence of the electroosmotic permeability in ionexchange membranes, J. Membr. Sci. 95 (1994) 1. [13] V.M. Barragán, C. Ruiz-Bauzá, J.I. Mengual, Effect of unstirred solution layers on electro-osmotic permeability of cation-exchange membranes, J. Colloid Interface Sci. 168 (1994) 458. [14] V.M. Barragán, C. Ruiz-Bauzá, Effect of unstirred solution layers on the thermal membrane potential through cationexchange membranes, J. Membr. Sci. 125 (1997) 219.