Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

SCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends

dc.contributor.authorPandit, Ravi
dc.contributor.authorAstolfi, Davide
dc.contributor.authorHong, Jiarong
dc.contributor.authorInfield, David
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-09-13T13:48:29Z
dc.date.available2024-09-13T13:48:29Z
dc.date.issued2022
dc.description.abstractThis paper reviews the recent advancement made in data-driven technologies based on SCADA data for improving wind turbines’ operation and maintenance activities (e.g. condition monitoring, decision support, critical components failure detections) and the challenges associated with them. Machine learning techniques applied to wind turbines’ operation and maintenance (O&M) are reviewed. The data sources, feature engineering and model selection (classification, regression) and validation are all used to categorise these data-driven models. Our findings suggest that (a) most models use 10-minute mean SCADA data, though the use of high-resolution data has shown greater advantages as compared to 10-minute mean value but comes with high computational challenges. (b) Most of SCADA data are confidential and not available in the public domain which slows down technological advancements. (c) These datasets are used for both, the classification and regression of wind turbines but are used in classification extensively. And, (d) most commonly used data-driven models are neural networks, support vector machines, probabilistic models and decision trees and each of these models has its own merits and demerits. We conclude the paper by discussing the potential areas where SCADA data-based data-driven methodologies could be used in future wind energy research.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.fundingtypePagado por el autor
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationPandit R, Astolfi D, Hong J, Infield D, Santos M. SCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends. Wind Engineering. 2023 Apr;47(2):422-41.
dc.identifier.doihttps://doi.org/10.1177/0309524X221124031
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108130
dc.issue.number2
dc.journal.titleWind Engineering
dc.language.isoeng
dc.page.final441
dc.page.initial422
dc.publisherSage Journals
dc.relation.projectIDPID2021-123543OB-C21
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordWind turbines
dc.subject.keywordSCADA data
dc.subject.keywordcondition monitoring
dc.subject.keywordperformance monitoring
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco3322.02 Generación de Energía
dc.titleSCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends
dc.typejournal article
dc.volume.number47
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pandit-et-al-2022-scada-data-for-wind-turbine-data-driven-condition-performance-monitoring-a-review-on-state-of-art.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format

Collections