Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Computation of the limiting distribution in queueing systems with repeated attempts and disasters

dc.contributor.authorArtalejo Rodríguez, Jesús Manuel
dc.contributor.authorGómez-Corral, Antonio
dc.date.accessioned2023-06-20T16:55:14Z
dc.date.available2023-06-20T16:55:14Z
dc.date.issued1999
dc.description.abstractSingle server queues with repeated attempts are useful in the modeling of computer and telecommunication systems. In addition, we consider iii this paper the possibility of disasters. When a disaster occurs, all the customers present in the sq stein are destroyed immediately. Using a regenerative approach, we derive a numerically stable recursion scheme for the stare probabilities. This model can be employed to analyze the behaviour of a buffer in computers with virus infections.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15882
dc.identifier.doi10.1051/ro:1999116
dc.identifier.issn1290-3868
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8234596
dc.identifier.relatedurlhttp://journals.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57426
dc.issue.number3
dc.journal.titleRAIRO - Recherche opérationnelle - Operations Research
dc.language.isoeng
dc.page.final382
dc.page.initial371
dc.publisherEDP Sciences
dc.relation.projectIDPB95-0416
dc.relation.projectIDINTAS 96-0828
dc.rights.accessRightsopen access
dc.subject.cdu519.8
dc.subject.keywordDisasters
dc.subject.keywordG-networks
dc.subject.keywordqueueing theory
dc.subject.keywordrepeated attempts
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleComputation of the limiting distribution in queueing systems with repeated attempts and disasters
dc.typejournal article
dc.volume.number33
dcterms.referencesJ. R.ARTALEJO, New results in retrial queueing Systems with breakdown of the servers, Statist. Neerlandica, 1994, 48, p. 23-36. J. R.ARTALEJO and A.GOMEZ-CORRAL, Steady state solution of a single-server queue with linear request repeated, J. Appl. Probab., 1997 , 34, p. 223-233. J. R.ARTALEJO and A.GOMEZ-CORRAL, Analysis of a stochastic clearing system with repeated attempts, Communications in Statistics-Stochastic Models, 1998, 14, p. 623-645. R. J.BOUCHERIE and O. J.BOXMA, The workload in the M/G/1 queue with work removal, Probab. Engineering and Informational Sci., 1996, 10, p. 261-277. X.CHAO, A queueing network model with catastrophes andproduct form solution, Operations Research Letters, 1995, 18, p. 75-79. G.I.FALIN and J. G. C.TEMPLETON, Retrial Queues, Chapman and Hall, London, 1997. J. M.FOURNEAU, E.GELENBE and R.SUROS, G-Networks with multiple classes of positive and negative customers, Theoret. Comput. Sci., 1996, 155, p. 141-156. E.GELENBE, P.GLYNN and K.SIGMAN, Queues with negative arrivals, J. Appl. Probab., 1991, 28, p. 245-250. E.GELENBE, Queueing networks with negative and positive customers and product form solution, J. Appl. Probab., 1991, 28, p. 656-663. E.GELENBE and M.SCHASSBERGER, Stability of product form G-Networks, Probab. Engineering and Informational Sci., 1992, 6, p. 271-276. E.GELENBE, G-Networks with triggered customer movement, J. Appl. Probab., 1993, 30, p. 742-748. E.GELENBE, G-Networks with signals and batch removal, Probab. Engineering and Informational Sci., 1993, 7, p. 335-342. E.GELENBE and A.LABED, G-Networks with multiple classes of signals and positive customers, European J. Oper. Res., 1998, 108, p. 393-405. P. G.HARRISON and E.PITEL, The M/G/1 queue with negative customer, Adv. Appl.Probab., 1996, 28, p. 540-566. G.JAIN and K.SIGMAN, A Pollaczek-Khintchine formula for M/G/1 queues with disasters, J. Appl. Probab., 1996, 33, p. 1191-1200. A. G.DE KOK, Algorithmic methods for single server Systems with repeated attempts, Statist Neerlandica, 1984, 38, p. 23-32. M.MARTIN and J. R.ARTALEJO, Analysis of an M/G/1 queue with two types of impatient units, Adv, Appl. Probab., 1995, 27, p. 840-861. H.SCHELLHAAS, Commutation of the state probabilities in a class of semi-regenerative queueing Models, J. Janssen, Ed., Semi-Markov Models: Theory and Applications Plenum Press, New York and London, 1986, p. 111-130. R.SERFOZO and S.STIDHAM, Semi-stationary clearing processes, Stochastic Process. Appl., 1978, 6, p. 165-178. S.STIDHAM, Stochastic clearing Systems, Stochastic Process. Appl., 1974, 2, p.85-113. H. C.TIJMS, Stochastic Models: An Algorithmic Approach, John Wiley and Sons, Chichester, 1994. T.YANG and J. G. C.TEMPLETON, A survey on retrial queues, Queueing Systems, 1987, 2, p. 201-233.
dspace.entity.typePublication
relation.isAuthorOfPublicationdb4b8a04-44b0-48e9-8b2c-c80ffae94799
relation.isAuthorOfPublication.latestForDiscoverydb4b8a04-44b0-48e9-8b2c-c80ffae94799

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
corral35.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format

Collections