Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Transverse Riemann-Lorentz type-changing metrics with tangent radical

dc.contributor.authorLafuente López, Javier
dc.contributor.authorAguirre Dabán, Eduardo
dc.date.accessioned2023-06-20T09:38:58Z
dc.date.available2023-06-20T09:38:58Z
dc.date.issued2006-03
dc.description.abstractConsider a smooth manifold with a smooth metric which changes bilinear type on a hypersurface Σ and whose radical line field is everywhere tangent to Σ. We describe two natural tensors on Σ and use them to describe “integrability conditions” which are similar to the Gauss–Codazzi conditions. We show that these forms control the smooth extendibility to Σ of ambient curvatures.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16460
dc.identifier.doi10.1016/j.difgeo.2005.08.001
dc.identifier.issn0926-2245
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0926224505000768
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50110
dc.issue.number2
dc.journal.titleDifferential Geometry and Its Applications
dc.language.isoeng
dc.page.final100
dc.page.initial91
dc.publisherElsevier Science
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordType-changing metrics
dc.subject.keywordCurvature extendibility
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleTransverse Riemann-Lorentz type-changing metrics with tangent radical
dc.typejournal article
dc.volume.number24
dcterms.referencesA. Bejancu, Null hypersurfaces of semi-euclidean spaces, Saitama Math. J. 14 (1996) 25–40. M. Kossowski, Fold singularities in pseudo-riemannian geodesic tubes, Proc. Amer. Math. Soc. 95 (1985) 463–469. M. Kossowski, Pseudo-riemannian metric singularities and the extendability of parallel transport, Proc. Amer. Math. Soc. 99 (1987) 147–154. M. Kossowski, M. Kriele, Transverse, type changing, pseudo-riemannian metrics and the extendability of geodesics, Proc. Roy. Soc. London. A 444 (1994) 297–306. M. Kossowski, M. Kriele, The volume blow-up and characteristic classes for transverse, type-changing, pseudo-riemannian metrics, Geom. Dedicata 64 (1997) 1–16. J.C. Larsen, Singular semiriemannian geometry, J. Geom. Phys. 9 (1992) 3–23.
dspace.entity.typePublication
relation.isAuthorOfPublication38d24ccf-5c11-420a-8fac-487c18b5cc1b
relation.isAuthorOfPublication88ba3646-cb2e-4524-b117-737c56cec2a4
relation.isAuthorOfPublication.latestForDiscovery38d24ccf-5c11-420a-8fac-487c18b5cc1b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lafuente03.pdf
Size:
156.28 KB
Format:
Adobe Portable Document Format

Collections