Transverse Riemann-Lorentz type-changing metrics with tangent radical
dc.contributor.author | Lafuente López, Javier | |
dc.contributor.author | Aguirre Dabán, Eduardo | |
dc.date.accessioned | 2023-06-20T09:38:58Z | |
dc.date.available | 2023-06-20T09:38:58Z | |
dc.date.issued | 2006-03 | |
dc.description.abstract | Consider a smooth manifold with a smooth metric which changes bilinear type on a hypersurface Σ and whose radical line field is everywhere tangent to Σ. We describe two natural tensors on Σ and use them to describe “integrability conditions” which are similar to the Gauss–Codazzi conditions. We show that these forms control the smooth extendibility to Σ of ambient curvatures. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16460 | |
dc.identifier.doi | 10.1016/j.difgeo.2005.08.001 | |
dc.identifier.issn | 0926-2245 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0926224505000768 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50110 | |
dc.issue.number | 2 | |
dc.journal.title | Differential Geometry and Its Applications | |
dc.language.iso | eng | |
dc.page.final | 100 | |
dc.page.initial | 91 | |
dc.publisher | Elsevier Science | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512 | |
dc.subject.keyword | Type-changing metrics | |
dc.subject.keyword | Curvature extendibility | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Transverse Riemann-Lorentz type-changing metrics with tangent radical | |
dc.type | journal article | |
dc.volume.number | 24 | |
dcterms.references | A. Bejancu, Null hypersurfaces of semi-euclidean spaces, Saitama Math. J. 14 (1996) 25–40. M. Kossowski, Fold singularities in pseudo-riemannian geodesic tubes, Proc. Amer. Math. Soc. 95 (1985) 463–469. M. Kossowski, Pseudo-riemannian metric singularities and the extendability of parallel transport, Proc. Amer. Math. Soc. 99 (1987) 147–154. M. Kossowski, M. Kriele, Transverse, type changing, pseudo-riemannian metrics and the extendability of geodesics, Proc. Roy. Soc. London. A 444 (1994) 297–306. M. Kossowski, M. Kriele, The volume blow-up and characteristic classes for transverse, type-changing, pseudo-riemannian metrics, Geom. Dedicata 64 (1997) 1–16. J.C. Larsen, Singular semiriemannian geometry, J. Geom. Phys. 9 (1992) 3–23. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 38d24ccf-5c11-420a-8fac-487c18b5cc1b | |
relation.isAuthorOfPublication | 88ba3646-cb2e-4524-b117-737c56cec2a4 | |
relation.isAuthorOfPublication.latestForDiscovery | 38d24ccf-5c11-420a-8fac-487c18b5cc1b |
Download
Original bundle
1 - 1 of 1