Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Prompt engineering for bibliographic web-scraping

dc.contributor.authorBlázquez Ochando, Manuel
dc.contributor.authorPrieto Gutiérrez, Juan José
dc.contributor.authorOvalle Perandones, María Antonia
dc.date.accessioned2025-07-21T11:01:46Z
dc.date.available2025-07-21T11:01:46Z
dc.date.issued2025-07-11
dc.description.abstractBibliographic catalogues store millions of data. The use of computer techniques such as web-scraping allows the extraction of data in an efficient and accurate manner. The recent emergence of ChatGPT is facilitating the development of suitable prompts that allow the configuration of scraping to identify and extract information from databases. The aim of this article is to define how to efficiently use prompts engineering to elaborate a suitable data entry model, able to generate in a single interaction with ChatGPT-4o, a fully functional web-scraper, programmed in PHP language, adapted to the case of bibliographic catalogues. As a demonstration example, the bibliographic catalogue of the National Library of Spain with a dataset of thousands of records is used. The findings present an effective model for developing web-scraping programs, assisted with AI and with the minimum possible interaction. The results obtained with the model indicate that the use of prompts with large language models (LLM) can improve the quality of scraping by understanding specific contexts and patterns, adapting to different formats and styles of presentation of bibliographic information.
dc.description.departmentDepto. de Biblioteconomía y Documentación
dc.description.facultyFac. de Ciencias de la Documentación
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationlázquez-Ochando, M., Prieto-Gutiérrez, J.J. & Ovalle-Perandones, M.A. Prompt engineering for bibliographic web-scraping. Scientometrics (2025). https://doi.org/10.1007/s11192-025-05372-5
dc.identifier.doi10.1007/s11192-025-05372-5
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s11192-025-05372-5
dc.identifier.urihttps://hdl.handle.net/20.500.14352/122659
dc.journal.titleScientometrics
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordPrompts
dc.subject.keywordScraping
dc.subject.keywordBibliographic catalogs
dc.subject.keywordLLM
dc.subject.keywordChatGPT
dc.subject.ucmBiblioteconomía y Documentación
dc.subject.unesco5701.06 Documentación
dc.titlePrompt engineering for bibliographic web-scraping
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationc3914788-1a74-442b-9b88-eb2398a0d435
relation.isAuthorOfPublication05ae253c-b4e1-4a2d-9424-c0c7ab5f1eed
relation.isAuthorOfPublication8c3d6657-ed4d-4b98-9a92-ea968d7d6083
relation.isAuthorOfPublication.latestForDiscoveryc3914788-1a74-442b-9b88-eb2398a0d435

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11192-025-05372-5.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format

Collections