Curvas algebraicas reales y superficies de Klein

dc.contributor.authorBujalance, E.
dc.contributor.authorEtayo Gordejuela, J. Javier
dc.contributor.authorGamboa, J. M.
dc.description.abstractThe classical correspondence between Riemann surfaces and complex algebraic curves, extends by the work of Ailing and Greenleaf to Klein surfaces and real algebraic curves. The topological invariants of the surface determine the ones of a smonoth and bounded model of the associated curve, and conversely. Moreover, the fields of meromorphic functions of both coincide. So, the automorphisms group, the real part of the associated complex curve, and the coverings and moduli space of the curve, may be studied in terms of the automorphisms group, the symmetries, the coverings and the Teichmüller space of the associated surface.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.identifier.citationALLING, N. L., y GREENLEAF, N.: «Foundations of the theory of Klein surfaces», Lect. Notes in Math., vol. 218, Springer-Verlag, Berhn, 1971. BERZOLARI, L.: «Allgemeine Théorie der hoheren ebenen algebraischen Kurven», Encyklopadie der Math, Wiss., III.2.1.04. BUJALANCE, E.: «Cyclic groups of automorphisms of compact non-orientable Klein surfaces without boundary». Pacific J. Math., 109, 279-289, 1983. BUJALANCE, E.; ETAYO, J. J., y GAMBOA, J. M.: «Hyperelliptic Klein surfaces» Quart. J. Math. Oxford, (2) 36, 1985. BUJALANCE, E., y GAMBOA, J. M.: «Automorphisms groups of algebraic curves of IR" of genus 2», Archiv der Math, (aparecerá). CHEVALLEY, C : «Introduction to the theory of algebraic functions of one variable». Math. Surveys, 6, AMS, Providence, 1951. ETAYO, J. J.: «Klein surfaces with maximal symmetry and their groups of automorphisms». Math. Annalen 268, 533-538, 1984. ETAYO, J. J.: «NEC subgroups in Klein surfaces» Bol Soc. Mat. Mex. 29, 1984. ETAYO, J. J.: «On the order of automorphism groups of Klein surfaces» Glasgow Math. J., 26, 75-81, 1985. ETAYO, J. J.: «Abelian groups of automorphisms of non-orientable Klein surfaces without boundary» (preprint). MACBEATH, A. M., y SINGERMAN, D.: «Spaces of subgroups and Teichmiiller space», Proc. London Math. Soc, 31, 211-256, 1975. MAY, C. L.: «Large automorphism groups of compact Klein surfaces with boundary», Glasgow Math. J., 18, 1-10, 1977. MAY, C. L.: «A bound for the number of automorphisms of a compact Klein surface with boundary», Proc. AMS., 63, 273-280, 1977. MAY, C. L.: «Cyclic automorphisms groups of compact bordered Klein surfaces», Houston Math. J., 3, 395-405, 1977. NATANZON, S. M.: «Automorphisms of the Riemann surface of an M-curve», Fund. Anal, and AppL, 12, 228-229, 1978. PRESTON, R.: «Projective structures and fundamental domains on compact Klein surfaces». Ph. D. thesis. Universidad de Texas, 1975. SINGERMAN, D.: «Symmetries of Riemann surfaces with large automorphism group», Math. Annalen, 210, 17-3^, 1974. WiLKiE, M. C: «On non-euclidean crystallographic groups», Math. Zeit., 91, 87-102, 1966.
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales.
dc.publisherReal Academia de Ciencias Exactas, Físicas y Naturales
dc.rights.accessRightsrestricted access
dc.subject.keywordRiemann surfaces
dc.subject.keywordComplex algebraic curves
dc.subject.keywordautomorphisms groups
dc.subject.ucmGeometria algebraica
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1201.01 Geometría Algebraica
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleCurvas algebraicas reales y superficies de Klein
dc.typejournal article
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
956.96 KB
Adobe Portable Document Format