Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms
dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
dc.contributor.author | Boccardo, L. | |
dc.contributor.author | Giachetti, D. | |
dc.contributor.author | Murat, F. | |
dc.date.accessioned | 2023-06-20T16:56:46Z | |
dc.date.available | 2023-06-20T16:56:46Z | |
dc.date.issued | 1993-11 | |
dc.description.abstract | The authors study the nonlinear elliptic equation (*) −div(a(x,u,Du))−div(Φ(u))+g(x,u)=f(x)in Ω with the boundary condition (∗∗) u=0 on ∂Ω, where Ω is a bounded open subset of RN, A(u)=−div(a(x,u,Du)) is a nonlinear operator of Leray-Lions type from W1,p0(Ω) into its dual, Φ∈(C0(R))N, g(x,t)t≥0, and f∈W−1,p′(Ω). No growth hypothesis is assumed on the vector-valued function Φ(u). The term div(Φ(u)) may be meaningless for usual weak solutions, even as a distribution. The authors deal with a weaker form of (∗),(∗∗), solutions of which in W1,p0(Ω) are called the "renormalized solutions'' of the original problem (∗),(∗∗). This weaker form can be formally obtained from (∗) by means of pointwise multiplication by h(u), where h is a C1 function with compact support. They prove the existence of renormalized solutions of (∗),(∗∗) and give sufficient conditions under which a renormalized solution is a usual weak solution. Furthermore, the authors study Ls- and L∞-regularity of renormalized solutions. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16166 | |
dc.identifier.doi | 10.1006/jdeq.1993.1106 | |
dc.identifier.issn | 0022-0396 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S002203968371106X | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/journal/00220396/106/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57484 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Differential Equations | |
dc.language.iso | eng | |
dc.page.final | 237 | |
dc.page.initial | 215 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.cdu | 519.6 | |
dc.subject.keyword | renormalized solutions | |
dc.subject.keyword | nonlinear Leray-Lions operator | |
dc.subject.keyword | largest class of possible test functions | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.subject.ucm | Análisis numérico | |
dc.subject.unesco | 1206 Análisis Numérico | |
dc.title | Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms | |
dc.type | journal article | |
dc.volume.number | 106 | |
dcterms.references | P. BÉNILAN, L. BOCCARDO, T. GALLOUET, R. GARIEPY, M. PIERRE, AND J. L. VAZQUEZ, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, to appear. A. BENSOUSSAN, L. BOCCARDO, AND F. MüRAT, On a nonlinear partial dífferential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire 5, No. 4 (1988), 347-364. L. BOCCARDO AND D. GIACHETTI, Alcune osservazioni sulla regolaritá delle soluzioni di problemi fortemenle non lineari e applicazioni, Ricerche Mat. 34, No. 2 (1985), 309-323. L. BOCCARDO AND D. GIACHETTI, Existence results vía regularity for some nonlinear elliptic problems, Comm. Partial Differential Equations 14, Nº.5 (1989),663-680. L. BOCCARDO, J.I. DÍAz, D. GIACHETTI, AND F. MURAT, Existence of a solution for a wcakcr form of a nonlinear elliptic equation, in "Recent Advanccs in Nonlincar Elliplic and Parabolic Problems (Proceedings. Nancy. 1988)" (P. Bénilan. M. Chipot.L.C. Evans, and M. Pierre, Eds.)pp. 229 -246, Pitman Research Notes in Mathematics Series. Vol. 208. Longman. Harlow. 1989. L. BOCCARDO, F. MURAT , AND J.P. PUEL, Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat Pur Appl. 152 (1988), 183-186. F. E. BROWDER, Existcncc theorcms for non linear partíal differential equations, in "Proceedings or Symposia in Pure Mathematics" (S. S. Chern and S. Smale. Eds.), Vol. 16, pp. 1-60. Amer. Math. Soc., Providence, Rl, 1970. R. J. DIPERNA AND P.-L. LIONS, Global existence for the Fokker-Planck-Boltzmann equations. Comm. Pure Appl. Math. 11, Nº 2 (1989). 729-758. R. J. DIPERNA AND P.-L. LIONS, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Of Math. 130 (1989), 321-366. J. LERAY AND J.-L. LIONS, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par la méthode de Minty-Browder. Bull. Soc. Math. France 93 (1965), 97-107. P.-L. LIONS AND F. MURAT. Sur les solutions renormalisées d'équations elliptiques non linéaires, C. R. Acad. Sci. Paris, and article, to appear. G. STAMPACCHIA, Equations elliptiques du second ordre á coefficients discontinus, Séminaires de l'Université de Montréal, Vol. 16, Montréal, 1966. L. BOCCARDO AND F. MURAT. An existence result via L-regularity for some nonlinear elliptic equations, in "Nonlinear Diffusion Equations and Their Equilibrium States. Volume III" (N. G. Llyod, W. N. Ni, L. A. Peletier, and J. Serrin, Eds.), pp. 145-152,Progress in Nonlinear Differential Equations and Their Applications, Vol. 8, Birkhäuser,Bostan, 1992. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
relation.isAuthorOfPublication.latestForDiscovery | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 |
Download
Original bundle
1 - 1 of 1