Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Intraband exciton relaxation in a biased lattice with long-range correlated disorder

dc.contributor.authorDíaz García, Elena
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-20T10:47:44Z
dc.date.available2023-06-20T10:47:44Z
dc.date.issued2008-04
dc.description©2008 The American Physical Society. The authors thank V. A. Malyshev and Yu. A. Kosevich for helpful conversations. This work was supported by MEC Project MOSAICO.
dc.description.abstractWe numerically study the intraband exciton relaxation in a one-dimensional lattice with a scale-free disorder in the presence of a linear bias. Exciton transport is the incoherent hopping over the eigenstates of the static lattice. The site potential of the unbiased lattice is long-range-correlated with a power-law spectral density S(k)similar to 1/k(alpha), alpha>0. The lattice supports a phase of extended states at the center of the band, provided alpha is larger than a critical value alpha(c) [F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998)]. When the bias is applied, the absorption spectrum displays clear signatures of the Wannier-Stark ladder [E. Diaz, F. Dominguez-Adame, Yu. A. Kosevich, and V. A. Malyshev, Phys. Rev. B 73, 174210 (2006)]. We demonstrate that in unbiased lattices and in weakly correlated potentials, the decay law is nonexponential. However, the decay is purely exponential when the bias increases and alpha is large. We relate this exponential decay to the occurrence of the Wannier-Stark ladder in the exciton band.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27318
dc.identifier.doi10.1103/PhysRevB.77.134201
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.77.134201
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51236
dc.issue.number13
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDProject MOSAICO
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordLocalized Frenkel Excitons
dc.subject.keywordElectric-Field
dc.subject.keywordTemperature-Dependence
dc.subject.keywordSuperlattices
dc.subject.keywordDna
dc.subject.keywordDelocalization
dc.subject.keywordTransition
dc.subject.keywordDynamics
dc.subject.keywordModels
dc.subject.keywordChain
dc.subject.ucmFísica de materiales
dc.titleIntraband exciton relaxation in a biased lattice with long-range correlated disorder
dc.typejournal article
dc.volume.number77
dcterms.references1. M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E 53, 414 (1996). 2. S. Havlin, S. V. Buldyrev, A. Bunde, A. L. Goldberger, P. Ch. Ivanov, C.-K. Peng, and H. E. Stanley, Physica A 273, 46 (1999). 3. P. Carpena, P. Bernaola-Galván, P. Ch. Ivanov, and H. E. Stanley, Nature London 418, 955 2002; 421, 764 (2003). 4. H. Yamada, Phys. Lett. A 332, 65 (2004); Int. J. Mod. Phys. B 18, 1697 (2004); Phys. Rev. B 69, 014205 (2004). 5. E. L. Albuquerque, M. S. Vasconcelos, M. L. Lyra, and F. A. B.F. de Moura, Phys. Rev. E 71, 021910 (2005). 6. S. Roche, D. Bicout, and E. Maciá, Phys. Rev. Lett. 92, 109901 (2004). 7. F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998). 8. F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999). 9. G.-P. Zhang and S.-J. Xiong, Eur. Phys. J. B 29, 491 (2002). 10. H. Shima, T. Nomura, and T. Nakayama, Phys. Rev. B 70, 075116 (2004). 11. F. Bloch, Z. Phys. 52, 555 (1928). 12. F. Domínguez-Adame, V. A. Malyshev, F. A. B. F. de Moura, and M. L. Lyra, Phys. Rev. Lett. 91, 197402 (2003). 13. G. H. Wannier, Phys. Rev. 117, 432 (1960). 14. E. Díaz, F. Domínguez-Adame, Yu. A. Kosevich, and V. A. Malyshev, Phys. Rev. B 73, 174210 (2006). 15. D. J. Heijs, V. A. Malyshev, and J. Knoester, J. Chem. Phys. 121, 4884 (2004). 16. M. Bednarz, V. A. Malyshev, and J. Knoester, J. Chem. Phys. 117, 6200 (2002). 17. M. Shimizu, S. Suto, and T. Goto, J. Chem. Phys. 114, 2775 (2001). 18. M. Bednarz, V. A. Malyshev, J. P. Lemaistre, and J. Knoester, J. Lumin. 94-95, 271 (2001) 19. A. V. Malyshev, V. A. Malyshev, and F. Domínguez-Adame, Chem. Phys. Lett. 371, 417 (2003). 20. A. V. Malyshev, V. A. Malyshev, and F. Domínguez-Adame, J. Phys. Chem. 107, 4418 (2003). 21. E. E. Méndez, F. Agulló-Rueda, and J. M. Hong, Phys. Rev. Lett. 60, 2426 (1988). 22. F. Agulló-Rueda, E. E. Méndez, and J. M. Hong, Phys. Rev. B 40, 1357 (1989). 23. M. K. Saker, D. M. Whittaker, M. S. Skolnick, M. T. Emeny, and C. R. Whitehouse, Phys. Rev. B 43, 4945 (1991). 24. H. Fukuyama, R. A. Bari, and H. C. Fogedby, Phys. Rev. B 8, 5579 (1973).
dspace.entity.typePublication
relation.isAuthorOfPublicationd03da7bf-8066-4f33-93e2-ac077fd4fcb8
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryd03da7bf-8066-4f33-93e2-ac077fd4fcb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame37libre.pdf
Size:
662.61 KB
Format:
Adobe Portable Document Format

Collections