Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Parabolic problems with nonlinear boundary conditions and critical nonlinearities

dc.contributor.authorArrieta Algarra, José María
dc.contributor.authorCarvalho, Alexandre N.
dc.contributor.authorRodríguez Bernal, Aníbal
dc.date.accessioned2023-06-20T17:09:08Z
dc.date.available2023-06-20T17:09:08Z
dc.date.issued1999-08-10
dc.description.abstractWe prove existence, uniqueness and regularity of solutions For heat equations with nonlinear boundary conditions. We study these problems with initial data in L-q(Omega), W-1,W-q(Omega), 1 < q < infinity or measures and with critically growing non-linearities.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17975
dc.identifier.doi10.1006/jdeq.1998.3612
dc.identifier.issn0022-0396
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022039698936129
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57852
dc.issue.number2
dc.journal.titleJournal of Differential Equations
dc.language.isoeng
dc.page.initial376
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordInterpolation theorems for scales of Banach spaces
dc.subject.keywordCritical growth
dc.subject.keywordInitial data
dc.subject.keywordEquations
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleParabolic problems with nonlinear boundary conditions and critical nonlinearities
dc.typejournal article
dc.volume.number156
dcterms.referencesR. Adams, "Sobolev Spaces," Academic Press, Boston, 1978. N. D. Alikakos, Regularity and asymptotic behavior for the second order parabolic equation with nonlinear boundary conditions in L p , J. Differential Equations 39 (1981), 311–344. H. Amann, On abstract parabolic fundamental solutions, J. Math. Soc. Japan 39 (1987), 93–116. H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Schmeisser/Triebel: Function Spaces, Differential Operators and Nonlinear Analysis," Teubner Texte zur Mathematik, Vol. 133, pp. 9–126, Teubner, Stuttgart, 1993. H. Amann, "Linear and Quasilinear Parabolic Problems. Abstract Linear Theory," Birkhäuser, Basel, 1995. J. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, to appear in Trans. Am. Math. Soc. H. Biagioni and T. Gramchev, On smoothing phenomena for systems of evolution equations with dissipation, preprint. H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in "Contributions to Nonlinear Functional Analysis" (E. Zarantonello, Ed.), pp. 101–165, 1971. H. Brezis, Problèmes unilateraux, J. Math. Pure Appl. 51 (1972), 1–168. H. Brezis and T. Cazenáve, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304. H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62 (1983), 73–97. A. Carvalho, S. M. Oliva, A. L. Pereira, and A. Rodriguez-Bernal, Attractors for parabolic problems with nonlinear boundary conditions, J. Math. Anal. Appl. 207 (1997), 409–461. L. Evans, Regularity properties of the heat equation subject to nonlinear boundary constraints, Nonlinear Anal. 1 (1977), 593–602. D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, Berlin, 1981. H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations 19 (1994), 959–1014. A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems," Birkhäuser, Basel, 1995. J. Moser, A sharp form of an inequaliy by N. Trudinger, Indiana U. Math. J. 20 (1971), 1077–1092. H. Tribel, "Interpolation Theory, Function Spaces, Differential Operators," North Holland, Amsterdam, 1978. N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. F. B. Weisler, Semilinear evolution equations in Banach spaces, J. Functional Anal. 32 (1979), 277–296. F. B. Weisler, Local existence and nonexistence for semilinear parabolic equations in L p , Indiana U. Math. J. 29 (1980), 79–102.
dspace.entity.typePublication
relation.isAuthorOfPublication2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscovery2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal49.pdf
Size:
284.77 KB
Format:
Adobe Portable Document Format

Collections