Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Syzygies of projective surfaces: an overview

dc.contributor.authorGallego Rodrigo, Francisco Javier
dc.contributor.authorPurnaprajna, Bangere P.
dc.date.accessioned2023-06-20T18:44:12Z
dc.date.available2023-06-20T18:44:12Z
dc.date.issued1999
dc.description.abstractThis is a survey article concerning the syzygies of projective smooth varieties, with particular emphasis on the surface case. It describes some special cases of surfaces in which the so-called Mukai conjecture holds (namely, if KX is the canonical bundle and A is an ample line bundle then the conjecture says that KX+mA satisfies the Np-property for m≥p+4). In higher dimension the case of Calabi-Yau threefolds and the example of the Veronese embedding of Pn are considered.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21341
dc.identifier.issn0970-1249
dc.identifier.officialurlhttp://www.ramanujanmathsociety.org/publications/journal-of-the-rms
dc.identifier.relatedurlhttp://www.ramanujanmathsociety.org/home
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58473
dc.issue.number1
dc.journal.titleJournal of the Ramanujan Mathematical Society
dc.page.final93
dc.page.initial65
dc.publisherRamanujan Mathematical Society
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.7
dc.subject.keywordSurfaces with positive irregularity
dc.subject.keywordKoszul cohomology groups
dc.subject.keywordPositive Kodaira dimension
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleSyzygies of projective surfaces: an overview
dc.typejournal article
dc.volume.number14
dspace.entity.typePublication
relation.isAuthorOfPublication708fdd58-694b-4a58-8267-1013d3272036
relation.isAuthorOfPublication.latestForDiscovery708fdd58-694b-4a58-8267-1013d3272036

Download

Collections