Size and power considerations for testing loglinear models using phi-divergence test statistics

Thumbnail Image
Full text at PDC
Publication Date
Cressie, Noel A.
Pardo Llorente, María del Carmen
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Statistica sinica
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this article, we assume that categorical data axe distributed according to a multinomial distribution whose probabilities follow a loglinear model. The inference problem we consider is that of hypothesis testing in a loglinear-model setting. The null hypothesis is a composite hypothesis nested within the alternative. Test statistics are chosen from the general class of phi-divergence statistics. This article collects together the operating characteristics of the hypothesis test based on both asymptotic (using large-sample theory) and finite-sample (using a designed simulation study) results. Members of the class of power divergence statistics are compared, and it is found that the Cressie-Read statistic offers an attractive alternative to the Pearson-based and the likelihood ratio-based test statistics, in terms of both exact and asymptotic size and power.
Unesco subjects
Agresti, A. (1990). Categorical Data Analysis. John Wiley, New York. Ali, S.M. and Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 286, 131–142. Christensen, R. (1997). Log-Linear Model and Logistic Regression. Springer-Verlag, New York. Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests. J. Roy. Statist. Soc. Ser. B 46, 440–464. Cressie, N. and Pardo, L. (2000). Minimum φ–divergence estimator and hierarchical testing in loglinear models. Statist. Sinica 10, 867–884. Cressie, N. and Pardo, L. (2002). Model checking in loglinear models using φ-divergences and MLEs. J. Statist. Plann. Inference 103, 437–453. Cressie, N., Pardo, L. and Pardo, M.C. (2001). Size and power considerations for testing loglinear models using φ–divergence test statistics. Technical Report No. 680. Department of Statistics, The Ohio State University, Columbus, OH. Csiszár, I. (1963). Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publications of the Mathematical Institute of Hungarian Academy of Sciences A 8, 85–108. Dale, J. R. (1986). Asymptotic normality of goodness-of-fit statistics for sparse product multinomials. J. Roy. Statist. Soc. Ser. B 41, 48–59. Fenech, A. P. and Westfall, P. H. (1988). The power function of conditional log-linear model tests. J. Amer. Statist. Assoc. 83, 198–203. Ferguson, T. S. (1996). A Course in Large Sample Theory. John Wiley, New York. Haberman, S. J. (1974). The Analysis of Frequency Data. University of Chicago Press, Chicago. Hájek, J. and Z. Sidák (1967). Theory of Rank Tests. Academic Press, New York. Kullback, S. (1985). Kullback information. In Encyclopedia of Statistical Sciences 4 (Edited by S. Kotz and N. L. Johnson), 421–425. John Wiley, New York. Matusita, K. (1954). On the estimation by the minimum distance method. Ann. Inst. Statist. Math. 5, 59–65. Menéndez, M. L., Morales, D., Pardo, L. and Zografos, K. (1999). Statistical inference for finite Markov chains based on divergences. Statist. Probab. Lett. 41, 9–17. Morales, D., Pardo, L. and Vajda, I. (1995). Asymptotic divergences of estimates of discrete distributions. J. Statist. Plann. Inference 48, 347–369. Neyman, J. (1949). Contribution to the theory of the χ2 test. Proceedings of the First Berkeley Symposium on Mathematical Statistics and Probability, 239–275. Oler, J. (1985). Noncentrality parameters in chi-squared goodness-of-fit analyses with an application to log-linear procedures. J. Amer. Statist. Assoc. 80, 181–189. Pardo, L., Pardo, M. C. and Zografos, K. (2001). Minimum phi-divergence estimator for homogeneity in multinomial populations. Sankhyā, A 63, 72–92. Read, T. R. C. and Cressie, N. A. C. (1988). Goodness-of-fit Statistics for Discrete Multivariate Data. Springer-Verlag, New York. Searle, S. R. (1971). Linear Models. John Wiley, New York.