Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Analysis of Digital Information in Storage Devices Using Supervised and Unsupervised Natural Language Processing Techniques

dc.contributor.authorMartínez Hernández, Luis Alberto
dc.contributor.authorSandoval Orozco, Ana Lucila
dc.contributor.authorGarcía Villalba, Luis Javier
dc.date.accessioned2024-05-23T13:47:33Z
dc.date.available2024-05-23T13:47:33Z
dc.date.issued2023-04-23
dc.description2023 Descuentos MDPI
dc.description.abstractDue to the advancement of technology, cybercrime has increased considerably, making digital forensics essential for any organisation. One of the most critical challenges is to analyse and classify the information on devices, identifying the relevant and valuable data for a specific purpose. This phase of the forensic process is one of the most complex and time-consuming, and requires expert analysts to avoid overlooking data relevant to the investigation. Although tools exist today that can automate this process, they will depend on how tightly their parameters are tuned to the case study, and many lack support for complex scenarios where language barriers play an important role. Recent advances in machine learning allow the creation of new architectures to significantly increase the performance of information analysis and perform the intelligent search process automatically, reducing analysis time and identifying relationships between files based on initial parameters. In this paper, we present a bibliographic review of artificial intelligence algorithms that allow an exhaustive analysis of multimedia information contained in removable devices in a forensic process, using natural language processing and natural language understanding techniques for the automatic classification of documents in seized devices. Finally, some of the open challenges technology developers face when generating tools that use artificial intelligence techniques to analyse the information contained in documents on seized devices are reviewed.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationLuis Alberto Martínez Hernández; Ana Lucila Sandoval Orozco; Luis Javier García Villalba. Analysis of Digital Information in Storage Devices Using Supervised and Unsupervised Natural Language Processing Techniques. Future Internet 2023, 15 (155), 155. https://doi.org/10.3390/fi15050155.
dc.identifier.doi10.3390/fi15050155
dc.identifier.officialurlhttps://www.mdpi.com/1999-5903/15/5/155
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104374
dc.issue.number155
dc.journal.titleFuture Internet
dc.language.isoeng
dc.publisherMDPI
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004(043.3)
dc.subject.keywordArtificial intelligence
dc.subject.keywordDigital information
dc.subject.keywordComputer forensic
dc.subject.keywordEntity extraction
dc.subject.keywordEntity recognition
dc.subject.keywordStorage devices
dc.subject.keywordText processing
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleAnalysis of Digital Information in Storage Devices Using Supervised and Unsupervised Natural Language Processing Techniques
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublicationdea44425-99a5-4fef-b005-52d0713d0e0d
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscoverydea44425-99a5-4fef-b005-52d0713d0e0d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Analysis of Digital Information in Storage Devices Using Supervised and Unsupervised Natural Language Processing Techniques.pdf
Size:
499.53 KB
Format:
Adobe Portable Document Format

Collections