Monitoring soil sealing in Guadarrama River basin, Spain, and its potential impact in agricultural areas

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
This study analyzes soil sealing and its repercussions in the loss of fertile soils, which are more appropriate for agriculture use. Also, soil sealing increases flood risk. The main objective is to estimate soil loss by sealing in the Guadarrama River Basin (Madrid, Spain) between 1961 and 2011. The combination of digital rocessing (Normalized Difference Vegetation Index (NDVI), principal components and convolution filters) of satellite imagery with the digital terrain model helps to detect risk areas and allows quick updating of sealed soil mapping. The supervised classifications of the images were used to estimate the actual soil loss by sealing (9% in 2011) in the Guadarrama River Basin and the types and agrologic classes that have been lost. Soil loss occurs to a greater extent in highly permeable soils (sands) and in the most fertile soils. The main sealed soil associations are luvisols (alfisols), regosols (entisols) and cambisols (inceptisols).
1. European Commission. Commission Staff Working Document: Guidelines on Best Practice to Limit, Mitigate or Compensate Soil Sealing. Available online: soil_sealing_guidelines_en.pdf (accessed on 13 May 2015). 2. Scalenghe, R.; Ajmone Marsan, F. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. 3. Zhang, X.; Chen, J.; Tan, M.; Sun, Y. Assessing the impact of urban sprawl on soil resources of Nanjing city using satellite images and digital soil databases. Catena 2007, 69, 16–30. 4. Amudson, R.; Guo, Y.; Gong, P. Soil diversity and land use in the United States. Ecosystems 2003, 6, 470–482. 5. Blum, W.E.H. Soil degradation caused by urbanization and industrial. In Towards Sustainable Land Use: Furthering Cooperation between People and Institution; Blume, H.P., Eger, H., Fleischhaver, E., Hebel, A., Reij, C., Steinen, K.G., Eds.; Catena-Verlag: Reiskirchen, Germany, 1998; Volume 31, pp. 755–766. 6. Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. 7. Yang, B.; Li, M.H. Assessing planning approaches by watershed streamflow modelling: Case study of the Woodlands, Texas. Landsc. Urban Plan. 2011, 99, 9–22. 8. Chen, L.; Sela, S.; Svoray, T.; Assouline, S. The role of soil-surface sealing, microtopography, and vegetation patches in rainfall-runoff processes in semiarid areas. Water Resour. Res. 2013, 49, 5585–5599. 9. Moeller, M. Remote Sensing for the Monitoring of Urban Growth Patterns. Available online: (accessed on 17 February 2015). 10. Ridd, M.K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. 11. Nizeyimana, E.L.; Petersen, G.W.; Imhoff, M.L.; Sinclair, H.R., Jr.; Waltman, S.W.; Reed-Margetan, D.S.; Levine, E.R.; Russo, J.M. Assessing the impact of land conversion to urban use on soils with different productivity levels in the USA. Soil Sci. Soc. Am. J. 2001, 65, 391–402. 12. Wu, C. Normalized spectral mixture analysis for monitoring urban composition using ETM + imagery. Remote Sens. Environ. 2004, 93, 480–492. 13. Valera, A.; Añó, C.; Sánchez, J. Cincuenta años de crecimiento urbano (1956–2006) y pérdida de suelo en la franja litoral del área metropolitana de Valencia. Eria 2013, 93, 261–273. 14. Kampouraki, M.;Wood, G.; Brewer, T. The Application of Remote Sensing to Identify and Measure Sealed Areas in Urban Environments. Available online: Papers/16_Automated%20classification%20IC%20II%20-%20Settlements%20Infrastructure/OBIA2006_Kam pouraki_Wood_Brewer.pdf (accessed on 23 March 2015). 15. García Rodríguez, M.P.; Pérez González, M.E. Changes in soil sealing in Guadalajara (Spain): Cartography with Landsat images. Sci. Total Environ. 2007, 378, 209–213. 16. Garzón, G.; Alonso, A. El río Guadarrama, morfología y sedimentación actuales en un cauce arenoso tipo braided. Cuad. Geol. Iber. 1996, 21, 360–393. 17. Información Territorial y Planeamiento Urbanístico. Available online: planea/index.htm (accessed on 12 August 2014). 18. Global Land Cover Facility. Available online: (accessed on 10 March 2014). 19. USGS. Shuttle Radar Topography Mission; University of Maryland: College Park, MD, USA, 2004. 20. EEA. Proceeding of the Technical Workshop on Indicators for Soil Sealing; European Environment Agency: Copenhagen, Denmark, 2002; p. 62. 21. EEA. The European Environment—State and Outlook 2010: Urban Environment; European Environment Agency: Copenhague, Denmark, 2010. 22. Monturiol, F.; Alcalá, L. Mapa de Asociaciones de Suelos de la Comunidad de Madrid. Available online: idad+de+Madrid.pdf&blobkey=id&blobtable=MungoBlobs&blobwhere=1310941582693&ssbinary=true (accessed on 21 January 2015). 23. Monturiol, F.; Alcalá, L. Mapa de Capacidad Potencial de Uso Agrícola de la Comunidad de Madrid; Instituto de Edafología y Biología Vegetal: Madrid, Spain, 1990; p. 31. 24. Klingebiel, A.A.; Montgomery, P.H. Land Capability Classification; USDA Agricultural Handbook 210; US Government Printing Office: Washington, DC, USA, 1961.