Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

XAI for Churn Prediction in B2B Models: A Use Case in an Enterprise Software Company

dc.contributor.authorMarín Díaz, Gabriel
dc.contributor.authorGalán Hernández, José Javier
dc.contributor.authorCarrasco González, Ramón Alberto
dc.date.accessioned2025-01-15T12:01:35Z
dc.date.available2025-01-15T12:01:35Z
dc.date.issued2022
dc.description.abstractThe literature related to Artificial Intelligence (AI) models and customer churn prediction is extensive and rich in Business to Customer (B2C) environments; however, research in Business to Business (B2B) environments is not sufficiently addressed. Customer churn in the business en vironment and more so in a B2B context is critical, as the impact on turnover is generally greater than in B2C environments. On the other hand, the data used in the context of this paper point to the importance of the relationship between customer and brand through the Contact Center. Therefore, the recency, frequency, importance and duration (RFID) model used to obtain the customer’s assessment from the point of view of their interactions with the Contact Center is a novelty and an additional source of information to traditional models based on purchase transactions, recency, frequency, and monetary (RFM). The objective of this work consists of the design of a methodological process that contributes to analyzing the explainability of AI algorithm predictions, Explainable Artificial Intelligence (XAI), for which we analyze the binary target variable abandonment in a B2B environment, considering the relationships that the partner (customer) has with the Contact Center, and focusing on a business software distribution company. The model can be generalized to any environment in which classification or regression algorithms are required.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationMarín Díaz, G.; Galán, J.J.; Carrasco, R.A. XAI for Churn Prediction in B2B Models: A Use Case in an Enterprise Software Company. Mathematics 2022, 10, 3896. https://doi.org/10.3390/ math10203896
dc.identifier.doi10.3390/ math10203896
dc.identifier.officialurlhttps://doi.org/10.3390/ math10203896
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114438
dc.issue.number3896
dc.journal.titleMathematics
dc.language.isoeng
dc.publisherMDPI
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu81'243 : 519.2
dc.subject.cdu004.89
dc.subject.keywordChurn detection
dc.subject.keywordXAI
dc.subject.keywordInterpretability
dc.subject.keywordB2B
dc.subject.keywordRFM
dc.subject.keywordRFID
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmInvestigación operativa (Estadística)
dc.subject.ucmAprendizaje
dc.subject.unesco1209.14 Técnicas de Predicción Estadística
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco5701.11 Enseñanza de Lenguas
dc.titleXAI for Churn Prediction in B2B Models: A Use Case in an Enterprise Software Company
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublicationdbf934cd-7a5b-4052-a128-5c68bf7d8b7e
relation.isAuthorOfPublicationf11206d7-9926-4f84-a47e-776cd56cea85
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication.latestForDiscoverydbf934cd-7a5b-4052-a128-5c68bf7d8b7e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AJCR-Q1-20-2022-MATH-oficial.pdf
Size:
8.73 MB
Format:
Adobe Portable Document Format

Collections