Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Shape-controlled synthesis and cathodoluminescence properties of elongated α-Fe_2O_3 nanostructures

dc.contributor.authorChioncel, M.
dc.contributor.authorDíaz-Guerra Viejo, Carlos
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-20T10:43:41Z
dc.date.available2023-06-20T10:43:41Z
dc.date.issued2008-12-15
dc.description© 2008 American Institute of Physics. This work has been supported by MEC through Project No. MAT2006-01259. M.F.C. acknowledges the financial support received from UCM and Banco Santander.
dc.description.abstractα-Fe_2O_3 (hematite) nanostructures with various morphologies have been grown by thermal oxidation of compacted iron powder at temperatures between 700 and 900 degrees C. Different thermal treatments have been found to induce the growth of single-crystalline nanowires, nanobelts, nanoplates and featherlike structures, free and caped nanopillars, and pyramidal microcrystals or cactuslike microstructures. The experimental conditions leading to the different morphologies have been systematically investigated, as well as the possible growth mechanisms. The obtained nanostructures have been characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy, x-ray diffraction, and cathodoluminescence (CL) spectroscopy in the SEM. The formation of the nanostructures induces changes in the intensity and spectral distribution of the CL emission, as compared with the bulk material. Ligand to metal charge transfer transitions as well as Fe^(3+) ligand field transitions are thought to be involved in the observed luminescence. The evolution of the panchromatic CL intensity in the visible range as a function of temperature shows some anomalies that may be induced by magnetic ordering effects.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipUCM
dc.description.sponsorshipBanco Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25803
dc.identifier.doi10.1063/1.3054168
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.3054168
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51089
dc.issue.number12
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDMAT2006-01259
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordIron-Oxide
dc.subject.keywordMagnetic-Properties
dc.subject.keywordOptical-Absorption
dc.subject.keywordAligned Arrays
dc.subject.keywordField-Emission
dc.subject.keywordNanowires
dc.subject.keywordHematite
dc.subject.keywordGrowth
dc.subject.keywordNanoparticles
dc.subject.keywordFluorescence
dc.subject.ucmFísica de materiales
dc.titleShape-controlled synthesis and cathodoluminescence properties of elongated α-Fe_2O_3 nanostructures
dc.typejournal article
dc.volume.number104
dcterms.references1. A. Kay, I. Cesar, and M. Grätzel, J. Am. Chem. Soc. 128, 15714 2006. 2. L. Huo, W. Li, L. Lu, H. Cui, S. Xi, J. Wang, B. Zhao, Y. Shen, and Z. Lu, Chem. Mater. 12, 790 2000. 3. Y. W. Zhu, T. Yu, C. H. Sow, Y. J. Liu, A. T. Wee, X. J. Xu, C. T. Lim, and J. T. L. Thong, Appl. Phys. Lett. 87, 023103 2005. 4. T. Ohmori, H. Takahashi, H. Mametsuka, and E. Suzuki, Phys. Chem. Chem. Phys. 2, 3519 2000. 5. M. Catti, G. Valerio, and R. Dovesi, Phys. Rev. B 51, 7441 1995. 6. M. F. Hansen, C. B. Koch, and S. Mørup, Phys. Rev. B 62, 1124 2000. 7. D. S. Xue, C. X. Gao, Q. F. Liu, and L. Y. Zhang, J. Phys.: Condens. Matter 15, 1455 2003. 8. B. Zong, Y. Wu, G. Han, B. Yang, P. Luo, L. Wang, J. Qiu, and K. Li,Chem. Mater. 17, 1515 2005. 9. Y. Lu, Y. Yin, B. T. Mayers, and Y. Xia, Nano Lett. 2, 183 2002. 10. Y. Fu, J. Chen, and H. Zhang, Chem. Phys. Lett. 350, 491 2001. 11. X. G. Wen, S. H. Wang, Y. Ding, Z. L. Wang, and S. Yang,J. Phys. Chem. B 109, 215 2005. 1 12. Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou, and Z. L. Wang, Adv. Funct. Mater. 16, 2243 2006. 13. C. Díaz-Guerra and J. Piqueras, J. Appl. Phys. 102, 084307 2007. 14. P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 18, 155203 2007. 15. E. Nogales, B. Méndez, and J. Piqueras, Nanotechnology 19, 035713 2008. 16. U. P. Deshpande, T. Shripathi, D. Jain, A. V. Narlikar, S. K. Deshpande, and Y. Y. Fu, J. Appl. Phys. 101, 064304 2007. 17. M. Boudeulle, H. Batis-Landoulsi, C. H. Leclercq, and J. Vergnon, Solid State Chem. 48, 21 1983. 18. Y. Y. Fu, J. Wang, J. Chen, Y. Yan, A. V. Narlikar, and H. Zhang, Chem. Phys. Lett. 379, 373 2003 19. C. H. Kim, H. J. Chun, D. S. Kim, J. Park, J. Y. Moon, G. Lee, J. Yoon, Y. Jo, M. Jung, S. I. Jung, and C. J. Lee, Appl. Phys. Lett. 89, 223103 2006. 20. 20C. J. Jia, L. Sun, Z. Yan, L. You, F. Luo, X. Han, Z. Zhang, Y. Pang, and C. Yan, Angew. Chem., Int. Ed. 44, 4328 2005. 21. 21C. J. Jia, L. Sun, Z. Yan, Y. Pang, L. You, and C. Yan, J. Phys. Chem. C 111, 13022 2007. 22. R. Takagi, J. Phys. Soc. Jpn. 12, 1212 1957. 23. Z. Zheng, Y. Chen, Z. Shen, J. Ma, C. Sow, W. Huang, and T. Yu, Appl. Phys. A: Mater. Sci. Process. 89, 115 2007. 24. 24R. Wang, Y. Chen, Y. Fu, H. Zhang, and C. Kisielowski,J. Phys. Chem. B 109, 12245 2005. 25. T. Yu, Y. Zhu, X. Xu, K. Yeong, Z. Shen, P. Chen, C. Lim, J. Thong, and C. Sow, Small 2, 80 2006. 26. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, Science 283, 512 1999. 27. W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, Adv. Mater. Weinheim, Ger. 12, 1343 2000. 28. Q. Han, Y. Y. Xu, Y. Y. Fu, H. Zhang, R. M. Wang, T. M. Wang, and Z. Y. Chen, Chem. Phys. Lett. 431, 100 2006. 29. B. S. Zou and V. Volkov, J. Phys. Chem. Solids 261, 2757 2000. 30. L. A. Marusak, R. Messier, and W. B. White, J. Phys. Chem. Solids 41, 981 1980. 31. D. M. Sherman and T. D. Waite, Am. Mineral. 70, 1262 1985. 32. Y. P. He, Y. M. Miao, C. R. Li, Q. Wang, L. Cao, S. S. Xie, G. Yang, B. S. Zou, and C. Burda, Phys. Rev. B 71, 125411 2005. 33. J. Wang, W. B. White, and J. H. Adair, Mater. Lett. 60, 2013 2006. 34. P. Merchant, R. Collins, R. Kershaw, K. Dwight, and A. Wold, J. Solid State Chem. 27, 307 1979. 35. A. A. Akl, Appl. Surf. Sci. 233, 307 (2004). 36. S. Mitra, S. Das, K. Mandal, and S. Chaudhuri, Nanotechnology 18, 275608 (2007). 37. Q. Han, Z. Liu, Y. Xu, Z. Chen, T. Wang, and H. J. Zhang, PhysChem-Comm 111, 5034 (2007). 38. B. S. Zou, W. Huang, M. Y. Han, S. Li, X. Wu, Y. Zhang, J. Zhang, P. Wu, and R. Wang, J. Phys. Chem. Solids 58, 1315 (1997). 39. S. Zeng, K. Tang, and T. Li, J. Colloid Interface Sci. 312, 513 (2007). 40. N. J. Cherepy, D. B. Liston, J. A. Lovejoy, H. Deng, and J. Z. Zhang, J. Phys. Chem. B 102, 770 (1998). 41. W. W. Holloway, M. Kestigian, R. Newman, and E. W. Prohofsky, Phys. Rev. Lett. 11, 82 (1963. 42. W. W. Holloway and M. Kestigian, Phys. Rev. Lett. 13, 235 (1964). 43. W. W. Holloway, E. W. Prohofsky, and M. Kestigian, Phys. Rev. 139, A954 (1965). 44. C. Díaz-Guerra and J. Piqueras, Solid State Commun. 104, 763 (1997). 45. N. Amin and S. Arajs, Phys. Rev. B 35, 4810 (1987). 46. C. G. Shull, W. A. Strauser, and E. O. Wollan, Phys. Rev. 83, 333 (1951). 47. L. Y. Zhang, D. S. Xue, X. F. Xu, A. B. Gui, and C. X. Gao, J. Phys.: Condens. Matter 16, 4541 (2004). 48. P. Gómez, J. Piqueras, M. J. Sayagués, and J. M. González-Calbet, Solid State Commun. 96, 45 (1995).
dspace.entity.typePublication
relation.isAuthorOfPublicationb1b44979-3a0d-45d7-aa26-a64b0dbfee18
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryb1b44979-3a0d-45d7-aa26-a64b0dbfee18

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ61libre.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format

Collections