Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Assessing the effect of inorganic anions on TiO2-photocatalysis and ozone oxidation treatment efficiencies

dc.contributor.authorBarndok, Helen
dc.contributor.authorHermosilla Redondo, María Daphne
dc.contributor.authorCortijo Garrido, Luis
dc.contributor.authorNegro Álvarez, Carlos Manuel
dc.contributor.authorBlanco Suárez, María Ángeles
dc.date.accessioned2023-06-20T03:43:33Z
dc.date.available2023-06-20T03:43:33Z
dc.date.issued2012
dc.description.abstractConsidering the application of AOPs might be limited for the treatment of industrial wastewater with high inorganic load, and that partial results reported to date regarding this particular are inconclusive, even opposite in some cases, the effect of inorganic anions on the oxidation efficiency of photocatalysis and ozonation has been further assessed with statistical significance. While the presence of sulphate and chloride did not appreciably affect the photocatalytic oxidation of phenol, nitrate significantly enhanced the removal of COD (≈8-15%). The addition of carbonate simply increased the pH, which strongly inhibited the photocatalytic process; whereas if pH=5 was kept constant, the reduction of the COD was not affected by the presence of carbonate. On the other hand, sulphate, chloride and nitrate did not significantly affect the degradation of phenol by ozonation; whereas the presence of carbonate apparently enhanced the reduction of COD. It is actually proved that this improvement in the efficiency of the treatment was produced by the pH buffering effect of these ions, rather than to its presence itself, which actually significantly reduced the removal of COD (5-10%) by radical scavenging action in comparison to when the treatment was performed in the absence of anions in the solution adjusting the pH to similar basic values (≈9.5-13.5). When ozonation was performed at a pH close to neutral (6.5 ± 0.2) or basic (12 ± 0.2), at which the indirect oxidation of hydroxyl radical is surely widely active, the results were significantly enhanced in any case (COD removal ≈70-75%), whether in the absence or the presence of these anions; despite the significant slight radical scavenging effect (COD removal ≈65-70%) that was attributed to the addition of carbonate.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commision
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26421
dc.identifier.issn1203-8407
dc.identifier.officialurlhttp://www.ingentaconnect.com/content/stn/jaots/2012/00000015/00000001/art00015
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44326
dc.issue.number1
dc.journal.titleJournal of Advanced Oxidation Technologies
dc.language.isoeng
dc.page.final132
dc.page.initial125
dc.publisherScience and Technology Network Inc.
dc.relation.hasversionAM
dc.relation.projectIDAQUAFIT4USE (211534)
dc.relation.projectIDPROLIPAPEL - CM (S- 500505/AMB-0100)
dc.relation.projectIDAGUA Y ENERGÍA (CTM2008-06886-C02-01)
dc.rights.accessRightsopen access
dc.subject.cdu676
dc.subject.cdu66
dc.subject.keywordPhotocatalysis
dc.subject.keywordOzonation
dc.subject.keywordRadical scavengers
dc.subject.keywordCarbonate
dc.subject.keywordSulphate
dc.subject.keywordNitrate
dc.subject.keywordChloride
dc.subject.ucmIndustria del papel
dc.subject.ucmIngeniería química
dc.subject.ucmMedio ambiente
dc.subject.unesco3312.13 Tecnología de la Madera
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.subject.unesco2391 Química Ambiental
dc.titleAssessing the effect of inorganic anions on TiO2-photocatalysis and ozone oxidation treatment efficiencies
dc.typejournal article
dc.volume.number15
dcterms.references(1) Esplugas, S.; Giménez, J.; Contreras, S.; Pascual, E.; Rodríguez, M. Water Res. 2002, 36, 1034-1042. (2) Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S. A.; Poulios, I.; Mantzavinos, D. J. Chem. Technol. Biotechnol. 2008, 83, 769-776. (3) Hermosilla, D.; Cortijo, M.; Huang, C. P. Sci. Total Environ. 2009, 407, 3473–3481. (4) Diebold, U. Surf. Sci. Rep. 2003, 48, 53-229. (5) Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Water Res. 2010, 44, 2997-3027. (6) Lucas, M. S.; Peres, J. A.; Lan, B. Y.; Puma, G. L. Water Res. 2009, 43, 1523-1532. (7) Lovato, M. E.; Martín, C. A.; Cassano, A. E. Chem. Eng. J. 2009, 146, 486-497. (8) Pignatello, J. J. Environ. Sci. Technol. 1992, 26, 944-951. (9) Lu, M. C. Chemosphere 1997, 35/10, 2285-2293. (10) Burns, R. A.; Crittenden, J. C.; Hand, D. W.; Selzer, V. H.; Sutter, L. L.; Salman, S. R. J. Environ. Eng. 1999, 125/1, 77-85. (11) Hoigné, J.; Bader, H. Water Res. 1976, 10, 377-386. (12) Matthews, R. W. J. Chem. Soc., Faraday Trans. 1 1984, 80/2, 457-71. (13) Bahnemann, D.; Cunningham, J.; Fox, M. A.; Pelizzetti, E.; Serpone, N.; Pichat, P. In Aquatic and Surface Photochemistry; Helz, G. R.; Zepp, R. G.; Crosby D. G., Eds.; Lewis: Boca Raton, 1994; pp. 261–316. (14) Guillard, C.; Lachheb, H.; Houas, A.; Ksibi, M.; Elaloui, E.; Herrmann, J. M. J. Photochem. Photobiol., A 2003, 158, 27-36. (15) Abdullah, M.; Low, G. K. C.; Matthews, R. W. J. Phys. Chem. 1990, 94/17, 6820-6825. (16) Yalap, K. S.; Balcioglu, I. A. J. Adv. Oxid. Technol. 2009, 12/1, 134-143. (17) Papadam, T.; Xekoukoulotakis, N. P.; Poulios, I.; Mantzavinos, D. J. Photochem. Photobiol., A 2007, 186, 308-315. (18) Wong, C. C.; Chu, W. Chemosphere 2003, 50, 981-987. (19) Wenhua, L.; Hong, L.; Sao’an, C.; Jianquing, Z.; Chunan, C. J. Photochem. Photobiol., A 2000, 131, 125-132. (20) Rincón, A. G.; Pulgarin, C. Appl. Catal., B 2004, 51, 283-302. (21) Serrano, K.; Michaud, P. A.; Comninellis, C.; Savall, A. Electrochim. Acta 2002, 48, 431-436. (22) Kashif, N.; Ouyang, F. J. Environ. Sci. 2009, 21, 527-533. (23) Méndez-Díaz, J.; Sánches-Polo, M. ; Rivera-Utrilla, J.; Canonica, S.; von Gunten, U. Chem. Eng. J. 2010, 165, 300-306. (24) Rastogi, A.; Al-Abed, S. R.; Dionysiou, D. D. Appl. Catal., B 2009, 85, 171-179. (25) Chen, H. Y.; Zahraa, O.; Bouchy, M. J. Photochem. Photobiol., A 1997, 108, 37-44. (26) Wang, K.; Zhang, J.; Lou, L.; Yang, S.; Chen, Y. J. Photochem. Photobiol., A, 2004, 165, 201-207. (27) Hu, C.; Yu, J. C.; Hao, Z.; Wong, P. K. Appl. Catal., B, 2003, 46, 35-47. (28) Habibi, M. H.; Hassanzadeh, A.; Mahdavi, S. J. Photochem. Photobiol., A 2005, 172, 89-96. (29) Epling, G. A.; Lin, Chemosphere 2002, 46, 937-944. (30) Hoigné, J.; Bader, H. Water Res. 1985, 19 (8), 993-1004. (31) Glaze, W. H.; Kang, J. W. Ind. Eng. Chem. Res. 1989, 28 (11), 1573-1580. (32) Ma, J.; Graham, N. J. D. Water Res. 2000. 34 (15), 3822-3828. (33) Alaton, I. A.; Kornmüller, A.; Jekel, M. R. J. Environ. Eng. 2002, 128 (8), 689-696. (34) Chiang, Y. P.; Liang, Y. Y.; Chang, C. N.; Chao, A. C. Chemosphere 2006, 65, 2395-2400. (35) Song, S.; Xu, X.; Xu, L.; He, Z.; Ying, H.; Chen, J. Ind. Eng. Chem. Res. 2008, 47, 1386-1391. (36) Lair, A.; Ferronato, C.; Chovelon, J. M.; Herrmann, J. M. J. Photochem. Photobiol., A 2008, 193, 193-203. (37) Schmelling, D. C.; Gray, K. A.; Kamat, P. V. Water Res. 1997, 31 (6), 1439-1447. (38) Ahmed, S.; Rasul, M. G.; Martens, W. N.; Brown, R.; 1 Hashib, M. A. Desalination 2010, 261, 3-18. (39) Li, K. Y.; Kuo, C. H.; Weeks, J. L. AIChE J. 1979, 25, 583–591. (40) Matheswaran, M.; Moon. I. S. J. Ind. Eng. Chem. 2009, 15, 287-292. (41) Chiou, C. H.; Wu, C. Y.; Juang, R. S. Chem. Eng. J. 2008, 139, 322-329. (42) Siedlecka, E. M.; Więckowska, A.; Stepnowski, P. J. Hazard. Mater. 2007, 147, 497-502. (43) Kusic, H.; Koprivanac, N.; Bozic, A. L. Chem. Eng. J. 2006, 123, 127-137. (44) Chang, C. N.; Ma, Y. S.; Fang, G. C.; Chao, A. C.; Tsai, M. C.; Sung, H. F. Chemosphere 2004, 56, 1011-1017. (45) Muneer, M.; Qamar, M.; Saquib, M.; Bahnemann, D. W. Chemosphere 2005, 61, 457–468. (46) Shifu, C.; Yunzhang, L. Chemosphere 2007, 67, 1010–1017. (47) Abbas, O.; Rebufa, C.; Dupuy, N.; Kister, J. Talanta 77 (2008) 200–209. (48) Sobczynski, A.; Duczmal, L.; Zmudzinski, W. J. Mol. Catal. 2004, 213, 225–230. (49) Makarova, O. V.; Rajh, T.; Thurnauer, M. C. Sci. Technol. 2000, 34, 4797-4803. (50) Fox, M. In Concepts of Inorganic Photochemistry; Adamson, A. W.; Fleishauer, P. D., Eds.; Wiley- Interscience: New York, 1975; pp. 333-380. (51) Stumm, W.; Morgan, J. J. Aquatic Chemistry; Wiley-Interscience: New York, 1996, pp. 1040. (52) Qamar, M.; Muneer, M.; Bahnemann, D. J. Environ. Manage. 2006, 80 (2), 99-106. (53) Huang, C. R.; Shu, H. Y. J. Hazard. Mater.1995, 41, 47-64. (54) Lan, B. Y.; Nigmatullin, R.; Puma, G. L. Water Res. 2008, 42, 2473-2482. (55) Zhang, F. F.; Yediler, A.; Liang, X. M.; Kettrup, A. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 2002, 37, 707-713. (56) Hermosilla, D.; Cortijo, M.; Huang, C. P. Chem. Eng. J. 2009, 155, 637-646. (57) Hoigné, J.; Bader, H. Water Res. 1983, 17 (2), 185-194.
dspace.entity.typePublication
relation.isAuthorOfPublication60a4ff3d-c200-4809-823e-c87c10d70711
relation.isAuthorOfPublication70170cd9-21de-4871-a7fe-b2ad29053b15
relation.isAuthorOfPublication04f905d2-6294-4530-9d01-062828ddefb2
relation.isAuthorOfPublication.latestForDiscovery60a4ff3d-c200-4809-823e-c87c10d70711

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Asessing_the_effect_of_inorganic_anions.pdf
Size:
178.93 KB
Format:
Adobe Portable Document Format

Collections