Three manifolds as geometric branched coverings of the three sphere.

dc.contributor.authorBrumfield, G.
dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorRamírez Losada, E.
dc.contributor.authorShort, H.
dc.contributor.authorTejada Cazorla, Juan Antonio
dc.contributor.authorToro, M.
dc.date.accessioned2023-06-20T10:36:04Z
dc.date.available2023-06-20T10:36:04Z
dc.date.issued2008-10
dc.description.abstractA finite covolume, discrete group of hyperbolic isometries U, acting on H3, is said to be universal if for every closed orientable 3-manifold M3 there is a finite index subgroup G of U so that M3=H3/G. It has been shown [H. M. Hilden et al., Invent. Math. 87 (1987), no. 3, 441–456;] that the orbifold group U of the Borromean rings with singular angle 90 degrees is universal and that H3/U=S3. In the present paper the authors construct a sequence of hyperbolic orbifold structures on S3 with orbifold groups Gi, i=1,…,4, such that G⊂G1⊂G2⊂G3⊂G4⊂U and they use this to obtain the following geometric branched covering space theorem: Let M3 be a closed orientable 3-manifold. Then there are finite index subgroups G⊂G1 of U such that M3=H3/G, S3=H3/G1 and the inclusion G→G1 induces a 3-fold simple branched covering M3→S3. The group U acts as a group of isometries of hyperbolic 3-space H3 so that there is a tessellation of H3 by regular dodecahedra any one of which is a fundamental domain for U. The authors construct a closely related Euclidean crystallographic group Uˆ corresponding to a tessellation of E3 by cubes that are fundamental domains for Uˆ, and exhibit a homomorphism φ:U→Uˆ which defines a branched covering H3→E3 that respects the two tessellations. They classify the finite index subgroups of Uˆ, and use their pullback under φ to obtain the main result of the paper: For any positive integer n there is an index n subgroup of U generated by rotations.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMTM
dc.description.sponsorshipCOLCIENCIAS
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22006
dc.identifier.issn1405-213X
dc.identifier.officialurlhttp://www.smm.org.mx/boletinSMM/v14/14-2-5.pdf
dc.identifier.relatedurlhttp://sociedadmatematicamexicana.org.mx/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50724
dc.issue.number2
dc.journal.titleBoletín de la Sociedad Matemática Mexicana. Tercera Serie
dc.language.isoeng
dc.page.final282
dc.page.initial263
dc.publisherSociedad Matemática Mexicana
dc.relation.projectID2004088080
dc.relation.projectID2007-67908-C02-01
dc.relation.projectIDCT 436-2007
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordbranched covering
dc.subject.keyworduniversal link
dc.subject.keyworduniversal group
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleThree manifolds as geometric branched coverings of the three sphere.
dc.typejournal article
dc.volume.number14
dcterms.referencesI. Berstein, A. Edmonds, On the construction of branched coverings of low dimwnsional manifolds, Trans. Amer. Math. Soc., 247, (1979), 87–123. R.H. Crowell and R.H. Fox, Introduction to knot theory, Based upon lectures given at Haverford College under the Philips Lecture Program. Ginn and Co., Boston, Mass., 1963. H. M. Hilden, Every closed orientable 3-manifold is a 3-fold branched covering space of S3, Bull. Amer. Math. Soc. 80, (1974), 1243–1244. H. M. Hilden, M. T. Lozano, and J. M. Montesinos, Nonsimple universal knots, Math. Proc. Cambridge Philos. Soc. 102 (1), (1987), 87–95. H. M. Hilden, M. T. Lozano, J. M. Montesinos, and W. C. Whitten, On universal groups and three-manifolds, Invent. Math. 87 (3), (1987), 441–456. H.M. Hilden, M.T. Lozano, and J. M. Montesinos, The Whitehead link, the Borromean rings and the knot 946 are universal, Collect. Math. 34 (1), (1983), 19–28. H.M. Hilden, M.T. Lozano, and J. M. Montesinos, On knots that are universal, Topology 24 (4), (1985), 499–504. ) H.M. Hilden, M.T. Lozano, and J.M. Montesinos, Universal knots, In Knot theory and manifolds (Vancouver, B.C., 1983), volume 1144 of Lecture Notes in Math., pages 25–59. Springer, Berlin, 1985. H.M. Hilden, M.T. Lozano, and J. M. Montesinos-Amilibia, On 2-universal knots, Bol. Soc. Mat. Mexicana (3), 10 (Special Issue), (2004), 239–253. G. Brumfiel, H.M. Hilden, M.T. Lozano, J. M. Montesinos-Amilibia, E. Ramírez-Losada, H. Short, D. Tejada and M. Toro, On finite index subgroups of a universal group, Bol. Soc. Mat. Mexicana (3), 14 (2008). U. Hirsch, Über offene Abbildungen auf die 3-Sphäre, Math. Z. 140, (1974), 203–230. M.T. Lozano and J.M. Montesinos-Amilibia, Geodesic flows on hyperbolic orbifolds, and universal orbifolds, Pacific J. Math. 177 (1), (1997), 109–147. J. M. Montesinos, A note on a theorem of Alexander, Rev. Mat. Hisp.-Amer. (4), 32, (1972), 167–187. J. M. Montesinos, A representation of closed orientable 3-manifolds as 3-fold branched coverings of S3, Bull. Amer. Math. Soc. 80 (1974), 845–846. J.M. Montesinos, Sobre la conjetura de poincaré y los recubridores ramificados sobre un nudo, Ph.D. Thesis, 1971. V. Núñez and J. Rodriguez-Viorato, Dihedral coverings of Montesinos knots, Bol. Soc. Mat. Mexicana (3), 10 (Special Issue), (2004), 423–449. W. P. Thurston, Universal links, Preprint, 1982. Y. Uchida, Universal chains, Kobe J. Math., 8 (1), (1991), 55–65. Y. Uchida, Universal pretzel links, In Knots 90 (Osaka, 1990), pages 241–270. de Gruyter, Berlin, 1992.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication77359969-4313-4334-adef-1c2d7413fbb5
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos40.pdf
Size:
390.86 KB
Format:
Adobe Portable Document Format

Collections