Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

DeepEye: Deep convolutional network for pupil detection in real environments

dc.contributor.authorVera-Olmos, Francisco Javier
dc.contributor.authorPardo, Esteban
dc.contributor.authorMelero Carrasco, Helena
dc.contributor.authorMalpica, Norberto
dc.date.accessioned2024-02-08T12:24:04Z
dc.date.available2024-02-08T12:24:04Z
dc.date.issued2018
dc.description.abstractRobust identification and tracking of the pupil provides key information that can be used in several applications such as controlling gaze-based HMIs (human machine interfaces), designing new diagnostic tools for brain diseases, improving driver safety, detecting drowsiness, performing cognitive research, among others. We propose a deep convolutional neural network for eye-tracking based on atrous convolutions and spatial pyramids. DeepEye is able to handle real world problems such as varying illumination, blurring and reflections. The proposed network was trained and evaluated on 94,000 images taken from 24 data sets recorded in real world scenarios. DeepEye outperforms previous eye-tracking methods tested with these data sets. It improves the results of the current state of the art in a 26%, achieving an accuracy of more than 70% in almost every data set in terms of percentage of pupils detected with a distance error lower than 5 pixels.
dc.description.departmentDepto. de Psicobiología y Metodología en Ciencias del Comportamiento
dc.description.facultyFac. de Psicología
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.statuspub
dc.identifier.citationVera-Olmos, F.J. et al. ‘DeepEye: Deep Convolutional Network for Pupil Detection in Real Environments’. 1 Jan. 2019 : 85 – 95.
dc.identifier.doi10.3233/ica-180584
dc.identifier.essn1875-8835
dc.identifier.issn1069-2509
dc.identifier.officialurlhttps://doi.org/10.3233/ica-180584
dc.identifier.urihttps://hdl.handle.net/20.500.14352/100405
dc.journal.titleIntegrated Computer-Aided Engineering
dc.language.isoeng
dc.publisherSAGE
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ucmPsicología experimental
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleDeepEye: Deep convolutional network for pupil detection in real environments
dc.typejournal article
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication17bc1fff-dc5d-4ac3-914e-dd631e6a9ac1
relation.isAuthorOfPublication.latestForDiscovery17bc1fff-dc5d-4ac3-914e-dd631e6a9ac1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DeepEye.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format

Collections