Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A case study of the morning evolution of the convective boundary layer depth

dc.contributor.authorGarcía, José A.
dc.contributor.authorCancillo, María L.
dc.contributor.authorCano Marchante, José Leandro
dc.date.accessioned2023-06-20T19:12:13Z
dc.date.available2023-06-20T19:12:13Z
dc.date.issued2002-10
dc.description© 2002 American Meteorological Society. Thanks are due to the Central Nuclear de Almaraz for providing us with financial support. Also we are grateful to Gregorio Maqueda and Luis Cana of the Departamento de Ciencias de la Atmósfera, Universidad Complutense, Madrid, and Carlos Yagüe from the Spanish Instituto Nacional de Meteorología for their help in performing the soundings. Thanks are also due to the three anonymous reviewers, whose useful comments have improved the paper.
dc.description.abstractBecause of the importance of the convective boundary layer depth (CBLD) in determining pollutant concentrations near the surface, a study of the morning evolution of the convective boundary layer was carried out at the Central Nuclear de Almaraz, Almaraz, Spain, from 25 to 29 September 1995, with a tethersonde and a meteorological mast equipped with a sonic anemometer. The CBLD was estimated from the potential temperature and wind profile obtained with the tethersonde using a 0.5 critical bulk Richardson number criterion. Also, the evolution of the CBLD was studied using three different theoretical zero-order jump models. The results given by the models show that, even with far from homogeneous surfaces, the models fit the observed CBLD very well by tuning the parameters conveniently. The entrainment coefficient that relates the heat flux at the top of the CBL with the heat flux at the surface was almost entirely responsible for the goodness of the fit. The encroachment model works best during situations in which the rate of entrainment is relatively small.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCentral Nuclear de Almaraz
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27808
dc.identifier.issn0894-8763
dc.identifier.officialurlhttp://journals.ametsoc.org/doi/abs/10.1175/1520-0450(2002)041%3C1053%3AACSOTM%3E2.0.CO%3B2
dc.identifier.relatedurlhttp://journals.ametsoc.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59386
dc.issue.number10
dc.journal.titleJournal of applied meteorology
dc.language.isoeng
dc.page.final1059
dc.page.initial1053
dc.publisherAmerican Meteorological Society
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleA case study of the morning evolution of the convective boundary layer depth
dc.typejournal article
dc.volume.number41
dcterms.referencesBall, F. K., 1960: Control of inversion height by surface heating. Quart. J. Roy. Meteor. Soc., 86, 483–494. Batchvarova, T., and S. E. Gryning, 1991: Applied model for the growth of the daytime mixed layer. Bound.-Layer Meteor., 56, 261–274. Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 176–196. Carson, D. J., 1973: The development of a dry inversion-capped convectively unstable boundary layer. Quart. J. Roy. Meteor. Soc., 99, 450–467. Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93–106. Driedonks, A. G. M., 1982: Models and observations of the growth of the atmospheric boundary layer. Bound.-Layer Meteor., 23, 283–306. Fedorovich, E., 1995: Modeling the atmospheric convective boundary layer within a zero-order jump approach: An extended theoretical framework. J. Appl. Meteor., 34, 1916–1928. Gryning, S. E., and T. Batchvarova, 1990: A simple model of the daytime boundary-layer height. Preprints, Ninth Symp. on Turbulence and Diffusion, Roskilde, Denmark, Amer. Meteor. Soc., 379–382. Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825–1842. Holzworth, G. C., 1967: Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J. Appl. Meteor., 6, 1039–1044. ——, 1972: Mixing heights, wind speeds, and potential for urban air pollution throughout the contiguous United States. Office of Air Programs Publication AP-101, 118 pp. [Available from U.S. EPA, Office of Air Programs, 109 TW Alexander Dr., Research Triangle Park, NC 27711.] Lilly, D. K., 1968: Models of cloudy-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292–309. Stull, R. B., 1976: The energetics of entrainment across a density interface. J. Atmos. Sci., 33, 1260–1267. ——, 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp. Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30, 558–567. Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer height: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129–148. Zilitinkevich, S. S., 1975: Comments on ‘‘A model for the dynamics of the inversion above a convective boundary layer.’’ J. Atmos. Sci., 32, 991–992
dspace.entity.typePublication
relation.isAuthorOfPublicationbe85f666-1317-4680-8dd0-fb2ca03ef4a7
relation.isAuthorOfPublication.latestForDiscoverybe85f666-1317-4680-8dd0-fb2ca03ef4a7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
canomarchante06.pdf
Size:
366.91 KB
Format:
Adobe Portable Document Format

Collections