Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Determining the accuracy in supervised fuzzy classification problems

dc.book.titleComputational intelligence in decision and control : proceedings of the 8th International FLINS Conference
dc.contributor.authorGómez González, Daniel
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.editorRuan, Da
dc.contributor.editorMontero De Juan, Francisco Javier
dc.date.accessioned2023-06-20T13:38:30Z
dc.date.available2023-06-20T13:38:30Z
dc.date.issued2008-09-21
dc.description8th International Conference on Fuzzy Logic and Intelligent Technologies in Nuclear Science. SEP 21-24, 2008
dc.description.abstractA large number of accuracy measures for image classification are actually available in the literature for cris classification. Overall accuracy, producer accuracy, user accuracy, kappa index and tau value are some examples. But in contrast to this effort in measuring the accuracy in a crisp framework, few proposals can be found in order to determine accuracy for soft classifiers. In this paper we define some accuracy measures for soft classification that extend some classical accuracy measures for crisp classifiers. This elms of measures takes into account the preferences of the decision maker in order to differentiate some errors that in practice may not be have same relevance.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16913
dc.identifier.isbn978-981-279-946-3
dc.identifier.officialurlhttp://eproceedings.worldscinet.com/9789812799470/9789812799470_0067.html
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53161
dc.language.isoeng
dc.page.final416
dc.page.initial411
dc.page.total1173
dc.publication.placeSingapore
dc.publisherWorld Scientific
dc.rights.accessRightsopen access
dc.subject.cdu004.8
dc.subject.keywordKappa
dc.subject.ucmLenguajes de programación
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleDetermining the accuracy in supervised fuzzy classification problemsen
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isEditorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isEditorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero137.pdf
Size:
152.37 KB
Format:
Adobe Portable Document Format