Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the character variety of group representations of a 2-bridge link p/3 into PSL(2,C)

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1992

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Sociedad Matemática Mexicana
Citations
Google Scholar

Citation

Abstract

Consider the group G of a classical knot or link in S3. It is natural to consider the representations of G into PSL(2,C). The set of conjugacy classes of nonabelian representations is a closed algebraic set called the character variety (of representations of G into PSL(2,C)). If G is the group of a 2-bridge knot or link, then a polynomial results by an earlier published theorem of the authors. This polynomial is related to the Morgan-Voyce polynomials Bn(z), which can be defined by the formulas pn(z)=Bn(z−2), where pn=zpn−1−pn−2, p0=1, p1=z, or (z1−10)n=(pnpn−1−pn−1−pn−2). In this paper the authors do many calculations for classes of 2-bridge knots or links.

Research Projects

Organizational Units

Journal Issue

Description

Papers in honor of José Adem (Spanish)

Keywords

Collections