Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Structure-guided tuning of a selectivity switch towards ribonucleosides in Trypanosoma brucei purine nucleoside 2′-deoxyribosyltransferase

Loading...
Thumbnail Image

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley
Citations
Google Scholar

Citation

Del Arco, J., Mills, A., Gago, F., & Fernández-Lucas, J. (2019). Structure-Guided Tuning of a Selectivity Switch towards Ribonucleosides in Trypanosoma brucei Purine Nucleoside 2′-Deoxyribosyltransferase. ChemBioChem, 20(24), 2996-3000. https://doi.org/10.1002/CBIC.201900397

Abstract

The use of nucleoside 2′-deoxyribosyltransferases (NDTs) as biocatalysts for the industrial synthesis of nucleoside analogues is often hindered by their strict preference for 2′-deoxyribonucleosides. It is shown herein that a highly versatile purine NDT from Trypanosoma brucei (TbPDT) can also accept ribonucleosides as substrates; this is most likely because of the distinct role played by Asn53 at a position that is usually occupied by Asp in other NDTs. Moreover, this unusual activity was improved about threefold by introducing a single amino acid replacement at position 5, following a structure-guided approach. Biophysical and biochemical characterization revealed that the TbPDTY5F variant is a homodimer that displays maximum activity at 50 °C and pH 6.5 and shows a remarkably high melting temperature of 69 °C. Substrate specificity studies demonstrate that 6-oxopurine ribonucleosides are the best donors (inosine>guanosine≫adenosine), whereas no significant preferences exist between 6-aminopurines and 6-oxopurines as base acceptors. In contrast, no transferase activity could be detected on xanthine and 7-deazapurines. TbPDTY5F was successfully employed in the synthesis of a wide range of modified ribonucleosides containing different purine analogues.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections