Optimization Methods for In-Line Holography

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Society for Industrial and Applied Mathematics
Google Scholar
Research Projects
Organizational Units
Journal Issue
We present a procedure to reconstruct objects from holograms recorded in in-line holography settings. Working with one beam of polarized light, the topological derivatives and energies of functionals quantifying hologram deviations yield predictions of the number, location, shape and size of objects with nanometer resolution. When the permittivity of the objects is unknown, we approximate it by parameter optimization techniques. Iterative procedures combining topological field based geometry corrections and parameter optimization sharpen the initial predictions. Additionally, we devise a strategy which exploits the measured holograms to produce numerical approximations of the full electric field (amplitude and phase) at the screen where the hologram is recorded. Shape and parameter optimization of functionals employing such approximations of the electric field also yield images of the holographied objects.
[1] C.Y. Ahn, K. Jeon, Y.K. Ma, W.K. Park, A study on the topological derivative-based imaging of thin electromagnetic inhomogeneities in limited-aperture problems, Inverse Problems, 30 (2014), 105004. [2] C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles, WileyInterscience, New York, 1998. [3] F. Cakoni, D. Colton, A qualitative approach to inverse scattering theory, Applied Mathematical Sciences 188, Springer 2014. [4] A. Carpio, M.L. Rapún , Topological derivatives for shape reconstruction, Lecture Notes in Mathematics 1943 (2008), pp. 85-131. [5] A. Carpio, M.L. Rapún, Solving inverse inhomogeneous problems by topological derivative methods, Inverse Problems 24 (2008), 045014. [6] A. Carpio, M.L. Rapún, Hybrid topological derivative and gradient-based methods for electrical impedance tomography, Inverse Problems 28 (2012), 095010. [7] A. Carpio, T. G. Dimiduk, M. L. Rapún, V. Selgas, Noninvasive imaging of three-dimensional micro and nanostructures by topological methods, SIAM J. Imaging Sciences 9 (2016), pp. 1324-1354. [8] I. Catapano, L. Crocco, M. D. Urso, T. Isernia, 3D microwave imaging via preliminary support reconstruction: testing on the Fresnel 2008 database, Inverse Problems 25 (2009), 024002. [9] P.C. Chaumet, K. Belkebir, Three-dimensional reconstruction from real data using a conjugate gradient-coupled dipole method, Inverse Problems 25 (2009), 024003. [10] F. Caubet, M. Godoy, C. Conca, On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives, Inverse Probl. Imaging 10 (2016), pp. 327-367. [11] D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences 93, Springer 2013. [12] G. Deng, L.W. Cahill, An adaptive Gaussian filter for noise reduction and edge detection, in Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference Record. 3, pp. 1615-1619, 1993. [13] T.G. Dimiduk, R.W. Perry, J. Fung, V.N. Manoharan, Random-subset fitting of digital holograms for fast three-dimensional particle tracking, Applied Optics 53 (2014), pp. G177-G183. [14] T.G. Dimiduk, V.N. Manoharan, Bayesian approach to analyzing holograms of colloidal particles, Optics Express 24 (2016), pp. 24045-24060. [15] N. Dominguez, V. Gibiat, Non-destructive imaging using the time domain topological energy method, Ultrasonics 50 (2010), pp. 367-372. [16] O. Dorn, D. Lesselier, Level set methods for inverse scattering, Inverse Problems 22 (2006), pp. R67-R131. [17] O. Dorn, D. Lesselier, Level set methods for inverse scattering-some recent developments, Inverse Problems 25 (2009), 125001. [18] C. Eyraud, A. Litman, A. Hérique, W. Kofman, Microwave imaging from experimental data within a Bayesian framework with realistic random noise, Inverse Problems 25 (2009), 024005. [19] G.R Feijoo, A.A. Oberai, P.M. Pinsky, An application of shape optimization in the solution of inverse acoustic scattering problems, Inverse Problems 20 (2004), pp. 199-228. [20] G.R. Feijoo, A new method in inverse scattering based on the topological derivative, Inverse Problems 20 (2004), pp. 1819-1840. [21] P. Ferraro, S. Grilli, D. Alfieri, S. Nicola, A. De; Finizio, G. Pierattini, B. Javidi, G. Coppola, V. Striano, Extended focused image in microscopy by digital holography, Optics Express 13 (2005), pp. 6738-6749. [22] J. Fung, R. W. Perry, T. G. Dimiduk, V. N. Manoharan, Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms, J. Quant. Spectroscopy and Radiative Transfer 113 (2012), pp. 212-219. [23] D. Gilbart, N.S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001. [24] R.C. Gonzalez, R.E. Woods, Digital image processing (3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006. [25] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics in Applied Mathematics 69, SIAM 2011 [26] B.B. Guzina, M. Bonnet, Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics, Inverse Problems 22 (2006), 1761-1785. [27] B. Guzina, F. Pouhramadian, Why the high-frequency inverse scattering by topological sensitivity may work, Proc. R. Soc. A. 471 (2015), 20150187. [28] C. Johnson, J.C. Nedelec, On the coupling of boundary integral and finite element methods, Mathematics of Computation 35 (1980), pp. 1063-1079. [29] J.B. Keller, D. Givoli, Exact non-reflecting boundary conditions, J. Comput. Phys. 82 (1989), pp. 172-192 [30] A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems 18 (2002), pp. 1025-1040. [31] S.H. Lee,Y. Roichman, G.R. Yi, S.H. Kim, S.M. Yang, A. van Blaaderen, P. van Oostrum, D.G. Grier, Characterizing and tracking single colloidal particles with video holographic microscopy, Optics Express 15 (2007), pp. 18275-18282. [32] M. Hintermüller, A. Laurain, Electrical impedance tomography: from topology to shape, Control Cybern. 37 (2008), pp 913-933. [33] G. Indebetouw, P. Klysubun, A posteriori processing of spatiotemporal digital microholograms, J. Opt. Soc. Am. A 18 (2001), pp 326-331. [34] D. M. Kaz, R. McGorty, M. Mani, M. P. Brenner, and V.N. Manoharan, Physical ageing of the contact line on colloidal particles at liquid interfaces, Nature Materials, 11 (2011), pp. 138-142. [35] A. Kirsch, F. Hettlich, The mathematical theory of time-harmonic Maxwell’s equations: expansion-, integral-, and variational methods, Applied Mathematical Sciences, Springer 2015. [36] T. Latychevskaia, H.W. Fink, Resolution enhancement in digital holography by selfextrapolation of holograms, Optics Express 21 (2013), pp. 7726-7733. [37] M. Li, A. Abubakar, P.M. van den Berg, Application of the multiplicative regularized contrast source inversion method on 3D experimental Fresnel data, Inverse Problems 25 (2009), 024006. [38] A. Litman, D. Lesselier, F. Santosa, Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level set, Inverse Problems 14 (1998), pp. 685-706 [39] P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy, Optics Letters 30 (2005), pp. 468-478. [40] M. Masmoudi, Outils pour la conception optimale des formes, Thése d’Etat en Sciences Mathématiques, Université de Nice, 1987 [41] S. Meddahi, F. J. Sayas, V. Selgas, Non-symmetric coupling of BEM and mixed FEM on polyhedral interfaces, Math. Comp. 80 (2011), pp. 43-68. [42] J.C. Nedelec, Acoustic and electromagnetic equations. Integral representations for harmonic problems. Applied Mathematical Sciences 144, Springer, 2001 [43] B. Samet, S. Amstutz, M. Masmoudi, The topological asymptotic for the Helmholtz equation, SIAM J. Control Optim. 42 (2003), pp. 1523–1544. [44] J.P. Schäfer, MatScat Matlab Package, 2012, fileexchange/36831-matscat [45] J. Sokolowski, J.P. Zolésio, Introduction to shape optimization. Shape sensitivity analysis, Springer, Heidelberg, 1992 [46] J. Sokowloski, A. Zochowski, On the topological derivative in shape optimization, SIAM J. Control Optim. 37 (1999), pp.1251-1272. [47] S. Turley, Acoustic scattering from a sphere, Notes november 2006, scalar sphere.pdf [48] P.W.M. Tsang, K. Cheung, T. Kim, Y. Kim, T. Poon, Fast reconstruction of sectional images in digital holography, Optics Letters (2011), pp. 2650-2652. [49] C. Yu, M. Yuan, Q.H. Liu, Reconstruction of 3D objects from multi-frequency experimental data with a fast DBIM-BCGS method, Inverse Problems 25 (2009), 024007. [50] M.A.Yurkin, A.G. Hoekstra, The discrete-dipole-approximation code ADDA: Capabilities and known limitations, J. Quant. Spectroscopy Radiative Transfer 112 (2011), pp. 2234- 2247, [51] J. De Zaeytijd, A. Franchois, Three-dimensional quantitative microwave imaging from measured data with multiplicative smoothing and value picking regularization, Inverse Problems 25 (2009), 024004. [52] T. Vincent, Introduction to Holography, CRC Press, 2012 [53] A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, V. N. Manoharan, Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles, J. Quant. Spectroscopy Radiative Transfer 146 (2014), 499-509. [54] X. Zhang, E. Lam, T.C. Poon, Reconstruction of sectional images in holography using inverse imaging, Optics Express,16 (2008), pp. 17215-17226.