Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multihomotopy, Čech Spaces of loops and Shape Groups

dc.contributor.authorRodríguez Sanjurjo, José Manuel
dc.date.accessioned2023-06-20T18:46:25Z
dc.date.available2023-06-20T18:46:25Z
dc.date.issued1994-09
dc.description.abstractRecently, the author has given an alternate (and intrinsic) description of the shape category of metric compacta, based on the notion of multi-nets F:X→Y. These are defined as sequences (Fk) of upper semicontinuous multivalued mappings Fk:X→Y, whose values Fk(x), x∈X, have diameters tending to 0. Shape morphisms X→Y are defined as homotopy classes of multi-nets [J. M. R. Sanjurjo, Trans. Amer. Math. Soc. 329 (1992), no. 2, 625–636. In the present paper the author considers the set N(X,Y) of all multi-nets and endows it with a T0-topology. It is proved that two multi-nets are homotopic if and only if they belong to the same path-component of N(X,Y). A certain subspace of N(I,X), I=[0,1], is the Čech space of loops Ωˇ(X,x0). Its path components can be identified with the first shape group πˇ1(X,x0). The author also shows that the nth shape group πˇn(X,x0) coincides with a certain subgroup of the fundamental group of the iterated loop space Ωˇn−1(X,x0). These results assume a simple form if they are applied to internally movable compacta [J. Dydak, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 1, 107–110 and internal FANRs [V. F. Laguna and J. M. R. Sanjurjo, Topology Appl. 17 (1984), no. 2, 189–197. Finally, the author considers continuous flows π:M×R→M, where M is a locally compact ANR. It is proved that every asymptotically stable compact set X⊆M is shape dominated by a compact polyhedron, i.e., X is an FANR. In a remark the author points out that this theorem has also been obtained independently by B. Günther and J. Segal [Proc. Amer. Math. Soc. 119 (1993), no. 1, 321–329.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21920
dc.identifier.doi10.1112/plms/s3-69.2.330
dc.identifier.issn0024-6115
dc.identifier.officialurlhttp://www.journals.cambridge.org/journal_ProceedingsoftheLondonMathematicalSociety
dc.identifier.relatedurlhttp://www.lms.ac.uk/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58575
dc.issue.number2
dc.journal.titleProceedings of the London Mathematical Society
dc.page.final344
dc.page.initial330
dc.publisherOxford University Press (OUP)
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.143
dc.subject.keywordmulti-net
dc.subject.keywordupper-semicontinuous multi-valued maps
dc.subject.keywordshape morphisms
dc.subject.keywordshape groups
dc.subject.keywordspaces of loops
dc.subject.keywordCech space of loops
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleMultihomotopy, Čech Spaces of loops and Shape Groups
dc.typejournal article
dc.volume.number69
dspace.entity.typePublication
relation.isAuthorOfPublicationf54f1d9d-37e9-4c15-9d97-e34a6343e575
relation.isAuthorOfPublication.latestForDiscoveryf54f1d9d-37e9-4c15-9d97-e34a6343e575

Download

Collections