Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Flux terms and Robin boundary conditions as limit of reactions and potentials concentrating at the boundary

dc.contributor.authorArrieta Algarra, José María
dc.contributor.authorJiménez Casas, Ángela
dc.contributor.authorRodríguez Bernal, Aníbal
dc.date.accessioned2023-06-20T09:45:03Z
dc.date.available2023-06-20T09:45:03Z
dc.date.issued2008
dc.description.abstractWe analyze the limit of the solutions of an elliptic problem when some reaction and potential terms are concentrated in a neighborhood of a portion Gamma of the boundary and this neighborhood shrinks to Gamma as a parameter goes to zero. We prove that this family of solutions converges in certain Sobolev spaces and also in the sup norm, to the solution of an elliptic problem where the reaction term and the concentrating potential are transformed into a flux condition and a potential on Gamma.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17741
dc.identifier.doi10.4171/RMI/533
dc.identifier.issn0213-2230
dc.identifier.officialurlhttp://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.rmi/1216247099
dc.identifier.relatedurlhttp://projecteuclid.org/DPubS?Service=UI&version=1.0&verb=Display&handle=euclid
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50298
dc.issue.number1
dc.journal.titleRevista Matemática Iberoamericana
dc.page.final211
dc.page.initial183
dc.publisherUniversidad Autónoma Madrid
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.986
dc.subject.keywordElliptic equations
dc.subject.keywordConcentrating terms
dc.subject.keywordBoundary reaction
dc.subject.keywordBoundary potential
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleFlux terms and Robin boundary conditions as limit of reactions and potentials concentrating at the boundary
dc.typejournal article
dc.volume.number24
dcterms.referencesADAMS, R.: Sobolev Spaces. Pure and Applied Mathematics 65. Academic Press, New York-London, 1975. AMANN, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), 9–126. Teubner-Texte Math. 133. Teubner, Stuttgart, 1993. AMANN, H.: Linear and quasilinear parabolic problems. Vol. I. Abstract linear theory. Monographs in Mathematics 89. Birkhäuser Boston, Boston, MA, 1995. ARRIETA, J. M., CARVALHO, A. N. AND RODRÍGUEZ-BERNAL, A.: Attractors of parabolic problems with nonlinear boundary conditions. Uniform bounds. Comm. Partial Differential Equations 25 (2000), vol. 1–2, 1–37. ARRIETA, J. M., JIMÉNEZ-CASAS, A. AND RODRÍGUEZ-BERNAL, A.: Flux condition induced by concentraded reactions. In Equadiff 2003, 293–295. World Sci. Publ., Hackensack, NJ, 2005. ARRIETA, J. M., JIMÉNEZ-CASAS, A. AND RODRÍGUEZ-BERNAL, A.: Robin type conditions arising from concentrated potentials. In Proceedings of Equadiff 11, 157–164. Editors: M. Fila, A. Handlovicova, K. Mikula, M. Medved, P. Quittner and D. Sevcovic. 2007. ARRIETA, J. M., RODRÍGUEZ-BERNAL, A. AND ROSSI, J.: The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary. Proc. Roy. Soc. Edinburgh Sect. A, to appear. CÓNSUL, N. AND JORBA, A.: On the existence of patterns for a diffusion equation on a convex domain with nonlinear boundary reaction. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005), no. 10, 3321–3328. GILBARG, D. AND TRUDINGER, N. S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften 224. Springer-Verlag, Berlin-New York, 1977. KATO, T.: Perturbation theory for linear operators. Grundlehren der Mathematischen Wissenschaften 132. Springer-Verlag, Berlin-New York, 1976. LADYZHENSKAYA, O. AND URALTSEVA, N.: Linear and quasilinear elliptic equations. Academic Press, New York-London, 1968. PROTTER, M. AND WEINBERGER, H.: Maximum principles in differential equations. Prentice-Hall, Englewood Cliffs, N.J., 1967. SANCHEZ-HUBERT, J. AND SÁNCHEZ-PALENCIA, E.: Vibration and coupling of continuous systems. Asymptotic methods. Springer-Verlag, 1989. TRIBEL, H.: Interpolation theory, function spaces, differential operators. North Holland, 1978.
dspace.entity.typePublication
relation.isAuthorOfPublication2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscovery2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a

Download

Collections