Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A note on a separation problem

Loading...
Thumbnail Image

Full text at PDC

Publication date

1984

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Birkhäuser Verlag
Citations
Google Scholar

Citation

Abstract

The author proves the following theorem: Let A0 be a closed 1-dimensional semianalytic germ at the origin 0∈Rn. Let Z be a semianalytic set in Rn whose germ Z0 at 0 is closed and A0∩Z0={0}. Then there exists a polynomial h∈R[x1,⋯,xn] such that h∣Z∖{0}>0 and h∣A0∖{0}<0. The proof is by induction on the number of blowing-ups needed to "solve" the set A0. Some implications are then given, in particular a similar result for semialgebraic sets in Rn and polynomials.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections