Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Torelli theorem for the moduli space of framed bundles

dc.contributor.authorBiswas, Indranil
dc.contributor.authorGomez, Tomas
dc.contributor.authorMuñoz, Vicente
dc.date.accessioned2023-06-20T00:19:06Z
dc.date.available2023-06-20T00:19:06Z
dc.date.issued2010
dc.description.abstractLet X be an irreducible smooth complex projective curve of genus g >= 2, and let x is an element of X be a fixed point. Fix r > 1, and assume that g > 2 if r = 2. A framed bundle is a pair (E, phi), where E is coherent sheaf on X of rank r and fixed determinant xi, and phi: E(x) > C(r) is a non-zero homomorphism. There is a notion of (semi)stability for framed bundles depending on a parameter tau > 0, which gives rise to the moduli space of tau-semistable framed bundles M(tau). We prove a Torelli theorem for M(tau), for tau > 0 small enough, meaning, the isomorphism class of the one pointed curve (X, x), and also the integer r, are uniquely determined by the isomorphism class of the variety M(tau).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17012
dc.identifier.doi10.1017/S0305004109990417
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/abstract_S0305004109990417
dc.identifier.relatedurlhttp://www.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42387
dc.issue.number3
dc.journal.titleMathematical Proceedings of the Cambridge Philosophical Society
dc.language.isoeng
dc.page.final423
dc.page.initial409
dc.publisherCambridge Univ Press
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordFramed bundles
dc.subject.keywordSmooth curves
dc.subject.keywordModuli
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleTorelli theorem for the moduli space of framed bundles
dc.typejournal article
dc.volume.number148
dcterms.referencesM. F. ATIYAH. Vector bundles over an elliptic curve. Proc. London Math. Soc. (3) 7 (1957), 414–452. M. F. ATIYAH and R. BOTT. The Yang-Mills equations over Riemann surfaces. Roy. Soc. London Philos. Trans. Ser. A 308 (1982), 523–615. I. BISWAS, L. BRAMBILA-PAZ and P. E. NEWSTEAD. Stability of projective Poincare and Picard bundles. Bull. Lond. Math. Soc. 41 (2009), no. 3, 458–472. I. BISWAS and T. GOMEZ. Simplicity of stable principal sheaves. Bull. Lond. Math. Soc. 40 (2008),163–171. S. B. BRADLOW, O. GARCIA-PRADA, V. MERCAT, V. MUÑOZ and P. E. NEWSTEAD. On the geometry of moduli spaces of coherent systems on algebraic curves. Internat. J. Math. 18 (2007),411–453. L. BRAMBILA-PAZ, I. GRZEGORCZYK and P. E.NEWSTEAD.Geography of Brill-Noether loci for small slopes. J. Alg. Geom. 6 (1997), 645–669. J.-M. DREZET andM. S. NARASIMHAN. Groupe de Picard des varietes de modules de fibres semistables sur les courbes algebriques. Invent. Math. 97 (1989), 53–94. N.HITCHIN. Stable bundles and integrable systems. Duke Math. J. 54 (1987), 91–114. D. HUYBRECHTS and M. LEHN. Framed modules and their moduli. Internat. J. Math. 6 (1995),297–324. D.HUYBRECHTS and M. LEHN. The geometry of moduli spaces of sheaves. Aspects of Mathematics E31, (Vieweg,Braunschweig/Wiesbaden 1997). A.KOUVIDAKIS and T. PANTEV. The automorphism group of the moduli space of semistable vector bundles. Math. Ann. 302 (1995), 225–268. D. LUNA. Slices etales. Sur les groupes alg´ebriques. pp. 81–105. Bull. Soc. Math. France, Paris,Memoire 33 Soc.Math. France, Paris, 1973. M. MARUYAMA. Openness of a family of torsion free sheaves. Jour. Math. Kyoto Univ. 16 (1976),627–637. M. S. NARASIMHAN and S. RAMANAN. Geometry of Hecke cycles I, C. P. Ramanujam – a tribute. pp. 291–345. Tata Inst. Fund. Res. Studies in Math., 8(Springer, 1978). C. S. SESHADRI. Fibres vectoriels sur les courbes algebriques. Ast´erisque 96 (1982), 209 pp. C. SIMPSON. Moduli of representations of the fundamental group of a smooth projective variety I.Publ. Math. IHES 79 (1994), 47–129. A. N. TYURIN. Classification of vector bundles over an algebraic curve of arbitrary genus. Izv. Akad.Nauk SSSR Ser. Mat. 29 (1965), 657–688.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz07.pdf
Size:
499.39 KB
Format:
Adobe Portable Document Format

Collections