Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

The valuative tree is the projective limit of Eggers-Wall trees

dc.contributor.authorGarcía Barroso, Evelia R.
dc.contributor.authorGonzález Pérez, Pedro Daniel
dc.contributor.authorPopescu Pampu, Patrick
dc.date.accessioned2024-01-10T12:03:50Z
dc.date.available2024-01-10T12:03:50Z
dc.date.issued2019-03-08
dc.description.abstractConsider a germ C of reduced curve on a smooth germ S of complex analytic surface. Assume that C contains a smooth branch L. Using the Newton-Puiseux series of C relative to any coordinate system (x, y) on S such that L is the y-axis, one may define the Eggers-Wall tree of ΘL (C) relative to L. Its ends are labeled by the branches of C and it is endowed with three natural functions measuring the characteristic exponents of the previous Newton-Puiseux series, their denominators and contact orders. The main objective of this paper is to embed canonically ΘL (C) into Favre and Jonsson’s valuative tree P (ν) of real-valued semivaluations of S up to scalar multiplication, and to show that this embedding identifies the three natural functions on ΘL (C) as pullbacks of other naturally defined functions on P (ν). As a consequence, we generalize the well-known inversion theorem for one branch: if L' is a second smooth branch of C, then the valuative embeddings of the Eggers-Wall trees ΘL' (C) and ΘL (C) identify them canonically, their associated triples of functions being easily expressible in terms of each other. We prove also that the space P (ν) is the projective limit of Eggers-Wall trees over all choices of curves C. As a supplementary result, we explain how to pass from ΘL (C) to an associated splice diagram.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.statuspub
dc.identifier.citationGarcía Barroso, E.R., González Pérez, P.D., Popescu-Pampu, P.: The valuative tree is the projective limit of Eggers-Wall trees. RACSAM. 113, 4051-4105 (2019). https://doi.org/10.1007/s13398-019-00646-z
dc.identifier.doi10.1007/s13398-019-00646-z
dc.identifier.officialurlhttps//doi.org/10.1007/s13398-019-00646-z
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s13398-019-00646-z
dc.identifier.urihttps://hdl.handle.net/20.500.14352/92228
dc.issue.number4
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
dc.language.isoeng
dc.page.final4105
dc.page.initial4051
dc.publisherSpringer
dc.relation.projectIDMTM2016-80659-P
dc.relation.projectIDMTM2016-76868-C2-1-P
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordBranch
dc.subject.keywordCharacteristic exponent
dc.subject.keywordContact
dc.subject.keywordEggers-Wall tree
dc.subject.keywordNewton-Puiseux series
dc.subject.keywordPlane curve singularities
dc.subject.keywordSemivaluation
dc.subject.keywordSplice diagram
dc.subject.keywordRooted tree
dc.subject.keywordValuation
dc.subject.keywordValuative tree
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe valuative tree is the projective limit of Eggers-Wall treesen
dc.typejournal article
dc.type.hasVersionCVoR
dc.volume.number113
dspace.entity.typePublication
relation.isAuthorOfPublicationb7087753-f54f-4fdc-ac95-83b1b7fae921
relation.isAuthorOfPublication.latestForDiscoveryb7087753-f54f-4fdc-ac95-83b1b7fae921

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2019-Valuative-embedding.pdf
Size:
592.66 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
s13398-019-00646-z.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format

Collections