The valuative tree is the projective limit of Eggers-Wall trees
dc.contributor.author | García Barroso, Evelia R. | |
dc.contributor.author | González Pérez, Pedro Daniel | |
dc.contributor.author | Popescu Pampu, Patrick | |
dc.date.accessioned | 2024-01-10T12:03:50Z | |
dc.date.available | 2024-01-10T12:03:50Z | |
dc.date.issued | 2019-03-08 | |
dc.description.abstract | Consider a germ C of reduced curve on a smooth germ S of complex analytic surface. Assume that C contains a smooth branch L. Using the Newton-Puiseux series of C relative to any coordinate system (x, y) on S such that L is the y-axis, one may define the Eggers-Wall tree of ΘL (C) relative to L. Its ends are labeled by the branches of C and it is endowed with three natural functions measuring the characteristic exponents of the previous Newton-Puiseux series, their denominators and contact orders. The main objective of this paper is to embed canonically ΘL (C) into Favre and Jonsson’s valuative tree P (ν) of real-valued semivaluations of S up to scalar multiplication, and to show that this embedding identifies the three natural functions on ΘL (C) as pullbacks of other naturally defined functions on P (ν). As a consequence, we generalize the well-known inversion theorem for one branch: if L' is a second smooth branch of C, then the valuative embeddings of the Eggers-Wall trees ΘL' (C) and ΘL (C) identify them canonically, their associated triples of functions being easily expressible in terms of each other. We prove also that the space P (ν) is the projective limit of Eggers-Wall trees over all choices of curves C. As a supplementary result, we explain how to pass from ΘL (C) to an associated splice diagram. | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
dc.description.status | pub | |
dc.identifier.citation | García Barroso, E.R., González Pérez, P.D., Popescu-Pampu, P.: The valuative tree is the projective limit of Eggers-Wall trees. RACSAM. 113, 4051-4105 (2019). https://doi.org/10.1007/s13398-019-00646-z | |
dc.identifier.doi | 10.1007/s13398-019-00646-z | |
dc.identifier.officialurl | https//doi.org/10.1007/s13398-019-00646-z | |
dc.identifier.relatedurl | https://link.springer.com/article/10.1007/s13398-019-00646-z | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/92228 | |
dc.issue.number | 4 | |
dc.journal.title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | |
dc.language.iso | eng | |
dc.page.final | 4105 | |
dc.page.initial | 4051 | |
dc.publisher | Springer | |
dc.relation.projectID | MTM2016-80659-P | |
dc.relation.projectID | MTM2016-76868-C2-1-P | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keyword | Branch | |
dc.subject.keyword | Characteristic exponent | |
dc.subject.keyword | Contact | |
dc.subject.keyword | Eggers-Wall tree | |
dc.subject.keyword | Newton-Puiseux series | |
dc.subject.keyword | Plane curve singularities | |
dc.subject.keyword | Semivaluation | |
dc.subject.keyword | Splice diagram | |
dc.subject.keyword | Rooted tree | |
dc.subject.keyword | Valuation | |
dc.subject.keyword | Valuative tree | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | The valuative tree is the projective limit of Eggers-Wall trees | en |
dc.type | journal article | |
dc.type.hasVersion | CVoR | |
dc.volume.number | 113 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b7087753-f54f-4fdc-ac95-83b1b7fae921 | |
relation.isAuthorOfPublication.latestForDiscovery | b7087753-f54f-4fdc-ac95-83b1b7fae921 |