Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The valuative tree is the projective limit of Eggers-Wall trees

dc.contributor.authorGarcía Barroso, Evelia R.
dc.contributor.authorGonzález Pérez, Pedro Daniel
dc.contributor.authorPopescu Pampu, Patrick
dc.date.accessioned2024-01-10T12:03:50Z
dc.date.available2024-01-10T12:03:50Z
dc.date.issued2019-03-08
dc.description.abstractConsider a germ C of reduced curve on a smooth germ S of complex analytic surface. Assume that C contains a smooth branch L. Using the Newton-Puiseux series of C relative to any coordinate system (x, y) on S such that L is the y-axis, one may define the Eggers-Wall tree of ΘL (C) relative to L. Its ends are labeled by the branches of C and it is endowed with three natural functions measuring the characteristic exponents of the previous Newton-Puiseux series, their denominators and contact orders. The main objective of this paper is to embed canonically ΘL (C) into Favre and Jonsson’s valuative tree P (ν) of real-valued semivaluations of S up to scalar multiplication, and to show that this embedding identifies the three natural functions on ΘL (C) as pullbacks of other naturally defined functions on P (ν). As a consequence, we generalize the well-known inversion theorem for one branch: if L' is a second smooth branch of C, then the valuative embeddings of the Eggers-Wall trees ΘL' (C) and ΘL (C) identify them canonically, their associated triples of functions being easily expressible in terms of each other. We prove also that the space P (ν) is the projective limit of Eggers-Wall trees over all choices of curves C. As a supplementary result, we explain how to pass from ΘL (C) to an associated splice diagram.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.statuspub
dc.identifier.citationGarcía Barroso, E.R., González Pérez, P.D., Popescu-Pampu, P.: The valuative tree is the projective limit of Eggers-Wall trees. RACSAM. 113, 4051-4105 (2019). https://doi.org/10.1007/s13398-019-00646-z
dc.identifier.doi10.1007/s13398-019-00646-z
dc.identifier.officialurlhttps//doi.org/10.1007/s13398-019-00646-z
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s13398-019-00646-z
dc.identifier.urihttps://hdl.handle.net/20.500.14352/92228
dc.issue.number4
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
dc.language.isoeng
dc.page.final4105
dc.page.initial4051
dc.publisherSpringer
dc.relation.projectIDMTM2016-80659-P
dc.relation.projectIDMTM2016-76868-C2-1-P
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordBranch
dc.subject.keywordCharacteristic exponent
dc.subject.keywordContact
dc.subject.keywordEggers-Wall tree
dc.subject.keywordNewton-Puiseux series
dc.subject.keywordPlane curve singularities
dc.subject.keywordSemivaluation
dc.subject.keywordSplice diagram
dc.subject.keywordRooted tree
dc.subject.keywordValuation
dc.subject.keywordValuative tree
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe valuative tree is the projective limit of Eggers-Wall treesen
dc.typejournal article
dc.type.hasVersionCVoR
dc.volume.number113
dspace.entity.typePublication
relation.isAuthorOfPublicationb7087753-f54f-4fdc-ac95-83b1b7fae921
relation.isAuthorOfPublication.latestForDiscoveryb7087753-f54f-4fdc-ac95-83b1b7fae921

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2019-Valuative-embedding.pdf
Size:
592.66 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
s13398-019-00646-z.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format

Collections