Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Large automorphism groups of hyperelliptic Klein surfaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

1988

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Mathematical Society
Citations
Google Scholar

Citation

Abstract

A bordered Klein surface of algebraic genus p has at most 12(p-1) automorphisms and this is attained for infinitely many values of p. Furthermore, for an infinity of values of p, the largest group of automorphisms of such a surface is $4(p+1)$ or 4p depending on whether the surface is orientable or not [{\it C. L. May}, Pac. J. Math. 59, 199- 210 (1975) and Proc. Am. Math. Soc. 63, 273-280 (1977]. \par Here the authors examine such surfaces which are additionally hyperelliptic and have automorphism groups of order exceeding 4(p-1). Using their characterization of hyperelliptic Klein surface via non- Euclidean crystallographic groups [Q. J. Math., Oxf. II. Ser. 36, 141-157 (1985)] the authors determine these automorphism groups, which are all dihedral or direct sums of a dihedral group and a cyclic group of order 2, and the corresponding topological type of the surface.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections