Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Some qualitative properties for the total variation flow

Loading...
Thumbnail Image

Full text at PDC

Publication date

2002

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We prove the existence of a finite extinction time for the solutions of the Dirichlet problem for the total variation flow. For the Neumann problem, we prove that the solutions reach the average of its initial datum in finite time. The asymptotic profile of the solutions of the Dirichlet problem is also studied. It is shown that the profiles are nonzero solutions of an eigenvalue-type problem that seems to be unexplored in the previous literature. The propagation of the support is analyzed in the radial case showing a behaviour entirely different to the case of the problem associated with the p-Laplacian operator. Finally. the study of the radially symmetric case allows us to point out other qualitative properties that are peculiar of this special class of quasilinear equations.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections